| [1] |
HUANG Chuande, WU Jian, CHEN Youtao, et al. In situ encapsulation of iron(0) for solar thermochemical syngas production over iron-based perovskite material[J]. Communications Chemistry, 2018, 1: 55.
|
| [2] |
LI Xinyu, LI Di, TIAN Hao, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 202: 683-694.
|
| [3] |
JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
| [4] |
YIN Xianglei, ZHANG Runsen, ZHANG Yulong, et al. Enhanced reactivity of methane partial oxidation of nickel doped LaMnO3+ δ perovskites for chemical looping process[J]. International Journal of Hydrogen Energy, 2024, 71: 481-492.
|
| [5] |
TSURU Toshinori, YAMAGUCHI Koji, YOSHIOKA Tomohisa, et al. Methane steam reforming by microporous catalytic membrane reactors[J]. AIChE Journal, 2004, 50(11): 2794-2805.
|
| [6] |
MURMURA M A, CERBELLI S, ANNESINI M C. Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study[J]. Chemical Engineering Science, 2017, 162: 88-103.
|
| [7] |
JI Jinqing, SHEN Laihong. Enhanced co-production of high-quality syngas and highly-concentrated hydrogen via chemical looping steam methane reforming over Ni-substituted La0.6Ce0.4MnO3 oxygen carriers[J]. Fuel, 2024, 368: 131588.
|
| [8] |
DAI Xiaoping, CHENG Jie, LI Zhanzhao, et al. Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical-looping methane reforming[J]. Chemical Engineering Science, 2016, 153: 236-245.
|
| [9] |
Axel LÖFBERG, KANE Tanushree, Jesús GUERRERO-CABALLERO, et al. Chemical looping dry reforming of methane: Toward shale-gas and biogas valorization[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 523-529.
|
| [10] |
HUANG Linan, LI Danyang, TIAN Dong, et al. Optimization of Ni-based catalysts for dry reforming of methane via alloy design: A review[J]. Energy & Fuels, 2022, 36(10): 5102-5151.
|
| [11] |
Miryam GIL-CALVO, Cristina JIMÉNEZ-GONZÁLEZ, DE RIVAS Beatriz, et al. Novel nickel aluminate-derived catalysts supported on ceria and ceria-zirconia for partial oxidation of methane[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6186-6197.
|
| [12] |
LI Yunhua, WANG Yaquan, HONG Xuebin, et al. Partial oxidation of methane to syngas over nickel monolithic catalysts[J]. AIChE Journal, 2006, 52(12): 4276-4279.
|
| [13] |
Axel LÖFBERG, Jesús GUERRERO-CABALLERO, KANE Tanushree, et al. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production[J]. Applied Catalysis B: Environmental, 2017, 212: 159-174.
|
| [14] |
HUANG Zhen, JIANG Huanqi, HE Fang, et al. Evaluation of multi-cycle performance of chemical looping dry reforming using CO2 as an oxidant with Fe-Ni bimetallic oxides[J]. Journal of Energy Chemistry, 2016, 25(1): 62-70.
|
| [15] |
MORE Amey, Götz VESER. Physical mixtures as simple and efficient alternative to alloy carriers in chemical looping processes[J]. AIChE Journal, 2017, 63(1): 51-59.
|
| [16] |
ZUO Huicong, LU Chunqiang, JIANG Lei, et al. Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept[J]. Chemical Engineering Journal, 2023, 477: 146870.
|
| [17] |
ZENG Dewang, QIU Yu, LI Min, et al. Spatially controlled oxygen storage materials improved the syngas selectivity on chemical looping methane conversion[J]. Applied Catalysis B: Environmental, 2021, 281: 119472.
|
| [18] |
LIU Fang, CHEN Liangyong, NEATHERY James K, et al. Cerium oxide promoted iron-based oxygen carrier for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16341-16348.
|
| [19] |
王嘉锐, 刘大伟, 邓耀, 等. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253.
|
|
WANG Jiarui, LIU Dawei, DENG Yao, et al. Research progress of oxygen carriers in chemical looping reforming reaction of methane[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253.
|
| [20] |
ADANEZ Juan, ABAD Alberto, Francisco GARCIA-LABIANO, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282.
|
| [21] |
向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332.
|
|
XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332.
|
| [22] |
GAO Yunfei, HAERI Farrah, HE Fang, et al. Alkali metal-promoted La x Sr2– x FeO4– δ redox catalysts for chemical looping oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2018, 8(3): 1757-1766.
|
| [23] |
CHEN Chi, CIUCCI Francesco. Designing Fe-based oxygen catalysts by density functional theory calculations[J]. Chemistry of Materials, 2016, 28(19): 7058-7065.
|
| [24] |
FENG Yuan, JIN Hanyu, WANG Shuai. Oxygen migration performance of LaFeO3 perovskite-type oxygen carriers with Sr doping[J]. Physical Chemistry Chemical Physics, 2023, 25(13): 9216-9224.
|
| [25] |
ZHANG Li, HU Yue, XU Weibin, et al. Anti-coke BaFe1- x Sn x O3- δ oxygen carriers for enhanced syngas production via chemical looping partial oxidation of methane[J]. Energy & Fuels, 2020, 34(6): 6991-6998.
|
| [26] |
LOMBARDO Gabriele, EBIN Burçak, FOREMAN Mark R St J, et al. Chemical transformations in Li-ion battery electrode materials by carbothermic reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13668-13679.
|
| [27] |
韩天佑. 金属卤化物、氧化物与硫化物生成热的一些规则——金属卤化物、氧化物与硫化物生成热的近似计算方法[J]. 化学通报, 1966, 29(3): 60-64.
|
|
HAN Tianyou. Some rules of heat of formation of metal halides, oxides and sulfides — Approximate calculation method of heat of formation of metal halides, oxides and sulfides[J]. Chemistry, 1966, 29(3): 60-64.
|
| [28] |
王利. LiCoO2在酸性焙烧环境中反应的热力学及影响因素研究[D]. 兰州: 兰州理工大学, 2013.
|
|
WANG Li. Research on thermodynamics and influencing factors of the reaction of LiCoO2 in the acid roasting conditions[D]. Lanzhou: Lanzhou University of Technology, 2013.
|
| [29] |
XIA Xue, CHANG Wenxi, CHENG Shuwen, et al. Oxygen activity tuning via FeO6 octahedral tilting in perovskite ferrites for chemical looping dry reforming of methane[J]. ACS Catalysis, 2022, 12(12): 7326-7335.
|
| [30] |
GOSAVI Priti V, BINIWALE Rajesh B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization[J]. Materials Chemistry and Physics, 2010, 119(1/2): 324-329.
|
| [31] |
KIM Jae-Nam, SHIN Kwang-Soo, KIM Dae-Hwan, et al. Changes in chemical behavior of thin film lead zirconate titanate during Ar+-ion bombardment using XPS[J]. Applied Surface Science, 2003, 206(1/2/3/4): 119-128.
|
| [32] |
THIRUMALAIRAJAN S, GIRIJA K, HEBALKAR Neha Y, et al. Shape evolution of perovskite LaFeO3 nanostructures: A systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities[J]. RSC Advances, 2013, 3(20): 7549-7561.
|
| [33] |
ROBBENNOLT Shauna, FORNELL Jordina, QUINTANA Alberto, et al. Structural and magnetic properties of Fe x Cu1– x sputtered thin films electrochemically treated to create nanoporosity for high-surface-area magnetic components[J]. ACS Applied Nano Materials, 2018, 1(4): 1675-1682.
|
| [34] |
HOLGADO J P, MUNUERA G, ESPINÓS J P, et al. XPS study of oxidation processes of CeO x defective layers[J]. Applied Surface Science, 2000, 158(1/2): 164-171.
|
| [35] |
ZHENG Yane, LI Kongzhai, WANG Hua, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Applied Catalysis B: Environmental, 2017, 202: 51-63.
|
| [36] |
LI Ranjia, YU Changchun, SHEN Shikong. Partial oxidation of methane to syngas using lattice oxygen of La1- x Sr x FeO3 perovskite oxide catalysts instead of molecular oxygen[J]. Journal of Natural Gas Chemistry, 2002, 11(3/4): 137-144.
|
| [37] |
XIAN Hui, ZHANG Xingwen, LI Xingang, et al. BaFeO3– x perovskite: An efficient NO x absorber with a high sulfur tolerance[J]. The Journal of Physical Chemistry C, 2010, 114(27): 11844-11852.
|