化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3794-3803.DOI: 10.16085/j.issn.1000-6613.2024-1085

• 化工过程与装备 • 上一篇    

管内梯度多孔镀层强化R245fa流动沸腾传热

曹泷1,2(), 刘贺1, 郭家驹1, 胡春霞1,2, 杨卧龙3, 吴学红1,2()   

  1. 1.郑州轻工业大学能源与动力工程学院,河南 郑州 450002
    2.河南省能源高效转化与利用国际联合实验室,河南 郑州 450002
    3.中国能源建设集团规划设计有限公司,北京 100120
  • 收稿日期:2024-07-06 修回日期:2024-09-02 出版日期:2025-07-25 发布日期:2025-08-04
  • 通讯作者: 吴学红
  • 作者简介:曹泷(1989—),男,博士,副教授,研究方向为多相流传热传质与低品位热能利用。E-mail:caos@zzuli.edu.cn
  • 基金资助:
    国家自然科学基金(51906231);中原科技创新青年拔尖人才项目;河南省重点研发与推广专项(232102321091);河南省重点研发与推广专项(242102321098);河南省科协青年托举人才工程(2024HYTP022);郑州轻工业大学青年骨干教师资助计划(13502010008)

R245fa flow boiling heat transfer characteristics in enhanced tube with gradient porous coating

CAO Shuang1,2(), LIU He1, GUO Jiaju1, HU Chunxia1,2, YANG Wolong3, WU Xuehong1,2()   

  1. 1.College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
    2.Henan International Joint Laboratory of Energy Efficient Conversion and Utilization, Zhengzhou 450002, Henan, China
    3.China Energy Engineering Group Planning & Engineering Co. , Ltd. , Beijing 100120, China
  • Received:2024-07-06 Revised:2024-09-02 Online:2025-07-25 Published:2025-08-04
  • Contact: WU Xuehong

摘要:

基于梯度多孔表面定向输运原理,采用烧结与电镀耦合的方法在不锈钢换热管内壁面制备一层轴向三梯度微-纳多孔镀层,以R245fa为工质进行管内流动沸腾传热实验,并同光滑管对比。两测试管内径均为10mm,有效加热长度800mm。实验工况为:饱和压力维持在0.6MPa;质量流速为200~700kg/(m2·s);热通量为5~75kW/m2;实验段入口干度为0.01~0.9。得益于三梯度强化管内镀层具有的定向输运及较强的表面再润湿特性,管内流动沸腾换热系数显著提升,相较光滑管最大可达1.71倍。同时通过控制调节实验段热通量、入口干度、质量流速等工况参数,得出了一系列传热系数随工况参数变化的规律,揭示了不同工况下沸腾传热效率的变化趋势。

关键词: 梯度表面, 润湿性, 流动沸腾, 强化传热

Abstract:

Based on the principle of directional transport on the gradient porous surface, a layer of axial triple-gradient micro-nano porous coating was prepared on the inner wall of a stainless-steel heat exchange tube by coupling sintering and electroplating. The flow boiling heat transfer experiment in the tube was carried out with R245fa as the working medium, and compared with a smooth tube. The two test tubes had the same inner diameters of 10mm and effective heat transfer lengths of 800mm. The saturation pressure was maintained at 0.6MPa, and the mass fluxes, inlet vapor qualities and heat fluxes were in ranges of 200—700kg/(m2·s), 0.01—0.9, and 5—75kW/m2, respectively. Due to the directional transport and strong surface rewetting characteristics of the coating in the tube, the flow boiling heat transfer coefficient in the tubes was significantly improved, and the maximum heat transfer coefficient was 1.71 times higher compared with the smooth tube. At the same time, by controlling and adjusting the working parameters of the experimental section, such as heat fluxes, inlet vapor mass qualities and mass fluxes, a series of laws of the change of heat transfer coefficient with the working parameters were obtained, and the changing trend of the boiling heat transfer efficiency under different working conditions was revealed.

Key words: gradient surface, wettability, flow boiling, heat transfer enhancement

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn