| [1] |
BEJAN A, LORENTE S, MARTINS L, et al. The constructal size of a heat exchanger[J]. Journal of Applied Physics, 2017, 122(6): 064902.
|
| [2] |
Hossein KAZEMI-ESFE, SHEKARI Younes, OMIDVAR Pourya. Comparison of heat transfer characteristics of a heat exchanger with straight helical tube and a heat exchanger with coiled flow reverser[J]. Applied Thermal Engineering, 2024, 253: 123772.
|
| [3] |
WAJS Jan, KURA Tomasz, MIKIELEWICZ Dariusz, et al. Numerical analysis of high temperature minichannel heat exchanger for recuperative microturbine system[J]. Energy, 2022, 238: 121683.
|
| [4] |
XU Nian, LIU Zilong, YU Xinyu, et al. Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114244.
|
| [5] |
徐鹏, 林清宇, 徐宏, 等. 多孔管管内流动沸腾传热实验[J]. 化工进展, 2010, 29(S1): 625-629.
|
|
XU Peng, LIN Qingyu, XU Hong, et al. Experimental study on flow boiling heat transfer in porous tubes[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 625-629.
|
| [6] |
CHEN Jingtan, AHMAD Shakeel, CAI Junjie, et al. Latest progress on nanotechnology aided boiling heat transfer enhancement: A review[J]. Energy, 2021, 215: 119114.
|
| [7] |
毛纪金, 张东辉, 孙利利, 等. 两种烧结通道的沸腾传热和阻力特性对比[J]. 化工进展, 2022, 41(7): 3483-3492.
|
|
MAO Jijin, ZHANG Donghui, SUN Lili, et al. Boiling heat transfer and resistance characteristics of two types of sintered structures[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492.
|
| [8] |
THIAGARAJAN Suraj Joottu, YANG Ronggui, KING Charles, et al. Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 89: 1297-1315.
|
| [9] |
BAI Pengfei, TANG Tao, TANG Biao. Enhanced flow boiling in parallel microchannels with metallic porous coating[J]. Applied Thermal Engineering, 2013, 58(1/2): 291-297.
|
| [10] |
WEIBEL Justin A, GARIMELLA Suresh V, NORTH Mark T. Characterization of evaporation and boiling from sintered powder wicks fed by capillary action[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4204-4215.
|
| [11] |
GUPTA Sanjay Kumar, MISRA Rahul Dev. Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings[J]. International Communications in Heat and Mass Transfer, 2018, 97: 47-55.
|
| [12] |
WANG Xueli, ZHANG Yonghai, QI Baojin, et al. Experimental study of the heater size effect on subcooled pool boiling heat transfer of FC-72 in microgravity[J]. Experimental Thermal and Fluid Science, 2016, 76: 275-286.
|
| [13] |
YAO Zhonghua, LU Yen-Wen, KANDLIKAR Satish G. Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling[J]. Journal of Micromechanics and Microengineering, 2012, 22(11): 115005.
|
| [14] |
LEE Donghwi, LEE Namkyu, SHIM Dong Il, et al. Enhancing thermal stability and uniformity in boiling heat transfer using micro-nano hybrid surfaces (MNHS)[J]. Applied Thermal Engineering, 2018, 130: 710-721.
|
| [15] |
MO Dongchuan, LUO Jiali, WANG Yaqiao, et al. Porous surfaces with structural gradient: Enhancing boiling heat transfer and its application in phase-change devices[J]. Chinese Science Bulletin, 2020, 65(17): 1638-1652.
|
| [16] |
MO Dongchuan, YANG Shuo, LUO Jiali, et al. Enhanced pool boiling performance of a porous honeycomb copper surface with radial diameter gradient[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119867.
|
| [17] |
Matevž ZUPANČIČ, Miha STEINBÜCHER, Peter GREGORČIČ, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering, 2015, 91: 288-297.
|
| [18] |
MOFFAT Robert J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
|
| [19] |
WATTELET J, CHATO J, SOUZA A L, et al. Evaporative characteristics of R-134a, MP-39, and R-12 at low mass fluxes[J]. ASHRAE Transactions, 1993, 100: 603-615.
|
| [20] |
FANG Xiande, WU Qi, YUAN Yuliang. A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J]. International Journal of Heat and Mass Transfer, 2017, 107: 972-981.
|
| [21] |
PIKE-WILSON E A, KARAYIANNIS T G. Flow boiling of R245fa in 1.1mm diameter stainless steel, brass and copper tubes[J]. Experimental Thermal and Fluid Science, 2014, 59: 166-183.
|
| [22] |
FILONENKO G K. Hydraulic resistance in pipes[J]. Teploenergetika, 1954, 1: 40-44.
|
| [23] |
ZHOU Shengnan, SHU Bifen, YU Zukang, et al. Experimental study and mechanism analysis of the flow boiling and heat transfer characteristics in microchannels with different surface wettability[J]. Micromachines, 2021, 12(8): 881.
|
| [24] |
CHENG Wenlong, CHEN Hua, YUAN Shuai, et al. Experimental study on heat transfer characteristics of R134a flow boiling in “Ω”-shaped grooved tube with different flow directions[J]. International Journal of Heat and Mass Transfer, 2017, 108: 988-997.
|
| [25] |
SAISORN Sira, Jatuporn KAEW-ON, WONGWISES Somchai. An experimental investigation of flow boiling heat transfer of R-134a in horizontal and vertical mini-channels[J]. Experimental Thermal and Fluid Science, 2013, 46: 232-244.
|
| [26] |
GNIELINSKI Volker. New equations for heat and mass transfer in turbulent pipe and channel flows[J]. International Journal of Chemical Engineering, 1976, 16: 359-368.
|
| [27] |
ZHANG Xiaoyu, LIU Zhichun, LIU Wei. Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes[J]. International Journal of Thermal Sciences, 2012, 58: 157-167.
|
| [28] |
LENG Xu, SUN Linchao, LONG Yaojia, et al. Bioinspired superwetting materials for water manipulation[J]. Droplet, 2022, 1(2): 139-169.
|