化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3324-3335.DOI: 10.16085/j.issn.1000-6613.2024-0658
• 化工过程与装备 • 上一篇
张磊1(
), 张新儒1,2, 王永洪1,2(
), 李晋平1,2, 刘春波3
收稿日期:2024-04-18
修回日期:2024-05-20
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
王永洪
作者简介:张磊(1998—),男,硕士研究生,研究方向为膜分离技术。E-mail:15803504526@163.com。
基金资助:
ZHANG Lei1(
), ZHANG Xinru1,2, WANG Yonghong1,2(
), LI Jinping1,2, LIU Chunbo3
Received:2024-04-18
Revised:2024-05-20
Online:2025-06-25
Published:2025-07-08
Contact:
WANG Yonghong
摘要:
渗透汽化具有分离效率高、节能环保和操作简单等优点,在有机化合物分离领域具有广阔的应用前景,而关键技术是渗透汽化膜的设计和制备。二维纳米材料混合基质膜结合了聚合物膜和二维纳米材料的优点,是最有工业化应用前景的渗透汽化分离膜,成为了近年研究的热点。本文介绍了渗透汽化膜分离技术、有机物渗透汽化分离机理和评价方法、二维纳米材料混合基质膜的制备方法以及不同类型二维纳米材料混合基质膜在有机物分离领域的应用研究进展。结合渗透汽化膜分离机理、有机物的特性和工业化需求,提出开发新型结构、易制备和高选择性的二维纳米材料的设计思路;根据成膜原理和两相界面作用机制,提出有机物分离混合基质膜的制备方法;借助有机物分子与膜微结构的相互作用,结合计算辅助模拟技术,提出分离机理研究的新思路。
中图分类号:
张磊, 张新儒, 王永洪, 李晋平, 刘春波. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J]. 化工进展, 2025, 44(6): 3324-3335.
ZHANG Lei, ZHANG Xinru, WANG Yonghong, LI Jinping, LIU Chunbo. Research progress of two-dimensional nanomaterial-based mixed matrix membranes in organic pervaporation separation[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3324-3335.
| 膜种类 | 原料液类型 | 实验条件 | 总通量/g·m-2·h-1 | 分离因子 | 参考文献 |
|---|---|---|---|---|---|
| PDMS/POSS@GO | 乙醇/水 | 40℃,5% | 1346 | 11 | [ |
| PIM/ODA-GO | 丁醇/水 | 65℃,5% | 541 | 33 | [ |
| PIM/ZIF-8-GO | 丁醇/水 | 65℃,5% | 7900 | 29 | [ |
| PDMS/Silica@GO | 乙醇/水 | 30℃,10% | 223 | 11 | [ |
| PI/GO | 甲醇/叔丁基醚 | 45℃,14% | 91 | 9 | [ |
| HPMA/GO | 甲醇/叔丁基醚 | 40℃,10% | 410 | 1250 | [ |
| PVA/GO | 甲苯/正庚烷 | 30℃,50% | 30.6 | 11.9 | [ |
| PVA/GO | 甲苯/正庚烷 | 40℃,50% | 27 | 12.9 | [ |
表1 掺杂GO混合基质膜的渗透汽化有机物分离性能
| 膜种类 | 原料液类型 | 实验条件 | 总通量/g·m-2·h-1 | 分离因子 | 参考文献 |
|---|---|---|---|---|---|
| PDMS/POSS@GO | 乙醇/水 | 40℃,5% | 1346 | 11 | [ |
| PIM/ODA-GO | 丁醇/水 | 65℃,5% | 541 | 33 | [ |
| PIM/ZIF-8-GO | 丁醇/水 | 65℃,5% | 7900 | 29 | [ |
| PDMS/Silica@GO | 乙醇/水 | 30℃,10% | 223 | 11 | [ |
| PI/GO | 甲醇/叔丁基醚 | 45℃,14% | 91 | 9 | [ |
| HPMA/GO | 甲醇/叔丁基醚 | 40℃,10% | 410 | 1250 | [ |
| PVA/GO | 甲苯/正庚烷 | 30℃,50% | 30.6 | 11.9 | [ |
| PVA/GO | 甲苯/正庚烷 | 40℃,50% | 27 | 12.9 | [ |
| [1] | ZAHARIA Carmen, MUSTERET Corina-Petronela, AFRASINEI Marius-Alexandru. The use of coagulation-flocculation for industrial colored wastewater treatment — (Ⅰ) The application of hybrid materials[J]. Applied Sciences, 2024, 14(5): 2184. |
| [2] | 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488. |
| TIAN Tingting, LI Chaoyang, WANG Zhaodong, et al. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488. | |
| [3] | 张香平, 白银鸽, 闫瑞一, 等. 离子液体萃取分离有机物研究进展[J]. 化工进展, 2016, 35(6): 1587-1605. |
| ZHANG Xiangping, BAI Yinge, YAN Ruiyi, et al. Progress in ionic liquids for extraction of organic compounds[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1587-1605. | |
| [4] | LIU Yanqing, HU Tingting, ZHAO Jinhe, et al. Synthesis and application of PDMS/OP-POSS membrane for the pervaporative recovery of n-butyl acetate and ethyl acetate from aqueous media[J]. Journal of Membrane Science, 2019, 591: 117324. |
| [5] | WANG Fengkai, SUN Hao, SHEN Mengxin, et al. Hydrophobic ultrathin MOF membranes with tuning pore structure for efficient alcohol-permselective pervaporation[J]. Journal of Membrane Science, 2024, 698: 122615. |
| [6] | LU Xiaotian, HUANG Jiachen, PINELO Manuel, et al. Modelling and optimization of pervaporation membrane modules: A critical review[J]. Journal of Membrane Science, 2022, 664: 121084. |
| [7] | YING Yulong, YANG Yefeng, YING Wen, et al. Two-dimensional materials for novel liquid separation membranes[J]. Nanotechnology, 2016, 27(33): 332001. |
| [8] | URAGAMI Tadashi, FUKUYAMA Eiji, MIYATA Takashi. Selective removal of dilute benzene from water by poly(methyl methacrylate)-graft-poly(dimethylsiloxane) membranes containing hydrophobic ionic liquid by pervaporation[J]. Journal of Membrane Science, 2016, 510: 131-140. |
| [9] | DONG Ziye, LIU Gongping, LIU Sainan, et al. High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery[J]. Journal of Membrane Science, 2014, 450: 38-47. |
| [10] | LIU Chunbo, MA Zhiwei, ZHANG Xinru, et al. Separating 2-phenylethanol from aqueous solution by mixed matrix composite membranes based on beta-cyclodextrin metal organic frameworks[J]. Separation and Purification Technology, 2024, 330: 125463. |
| [11] | LEE Ju Yeon, PARK Hongjin, LEE Jong Suk, et al. Biphenyl-based covalent triazine framework-incorporated polydimethylsiloxane membranes with high pervaporation performance for n-butanol recovery[J]. Journal of Membrane Science, 2020, 598: 117654. |
| [12] | ZHOU Lu, LI Shayu, CHEN Li, et al. MOFs and COFs based pervaporation membranes for alcohols/water separation: A review[J]. Separation and Purification Technology, 2024, 330: 125324. |
| [13] | SUKITPANEENIT Panu, CHUNG Tai-Shung. Molecular design of the morphology and pore size of PVDF hollow fiber membranes for ethanol-water separation employing the modified pore-flow concept[J]. Journal of Membrane Science, 2011, 374(1/2): 67-82. |
| [14] | WU Jiakai, YE Chunchun, ZHANG Wenhai, et al. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration[J]. Journal of Membrane Science, 2019, 577: 104-112. |
| [15] | HUANG Aisheng, FENG Bo. Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination[J]. Journal of Membrane Science, 2018, 548: 59-65. |
| [16] | CHENG Cheng, LI Peiyun, ZHANG Tonghui, et al. Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae[J]. Chemical Engineering Science, 2019, 196: 265-276. |
| [17] | 陈仪, 郭耀励, 叶海星, 等. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
| CHEN Yi, GUO Yaoli, YE Haixing, et al. Application of two-dimensional nanomaterials in pervaporation desalination membrane[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. | |
| [18] | TANG Wangyang, LOU He, LI Yifang, et al. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions[J]. Journal of Membrane Science, 2019, 581: 93-104. |
| [19] | DAI Shiqi, JIANG Yangyang, WANG Ting, et al. Enhanced performance of polyimide hybrid membranes for benzene separation by incorporating three-dimensional silver-graphene oxide[J]. Journal of Colloid and Interface Science, 2016, 478: 145-154. |
| [20] | ZHU Tengyang, XU Sheng, YU Fen, et al. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery[J]. Journal of Membrane Science, 2020, 598: 117681. |
| [21] | CAO Tengxuan, LI Jie, LI Chong, et al. POSS-graphene oxide nanocomposite membranes for ethanol permselective pervaporation[J]. Microporous and Mesoporous Materials, 2022, 331: 111635. |
| [22] | ALBERTO Monica, LUQUE-ALLED Jose Miguel, GAO Lei, et al. Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers[J]. Journal of Membrane Science, 2017, 526: 437-449. |
| [23] | QIU Boya, ALBERTO Monica, MOHSENPOUR Sajjad, et al. Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation[J]. Separation and Purification Technology, 2022, 299: 121693. |
| [24] | PENG Ping, LAN Yongqiang, XU Amei, et al. Enhanced ethanol pervaporative selectivity of polydimethylsiloxane membranes by incorporating with graphene oxide@silica core-shell structure[J]. Journal of Applied Polymer Science, 2023, 140(6): e53449. |
| [25] | Roberto CASTRO-MUÑOZ, GALIANO Francesco, DE LA IGLESIA Óscar, et al. Graphene oxide-filled polyimide membranes in pervaporative separation of azeotropic methanol-MTBE mixtures[J]. Separation and Purification Technology, 2019, 224: 265-272. |
| [26] | WANG Lin, WANG Naixin, YANG Hengyu, et al. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation[J]. Journal of Membrane Science, 2018, 559: 8-18. |
| [27] | PAKIZEH Majid, KARAMI Mahdi, KOOSHKI Sahar, et al. Advanced toluene/n-heptane separation by pervaporation: Investigating the potential of graphene oxide (GO)/PVA mixed matrix membrane[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 150: 105025. |
| [28] | ZHANG Yue, WANG Naixin, JI Shulan, et al. Metal-organic framework/poly(vinyl alcohol) nanohybrid membrane for the pervaporation of toluene/n-heptane mixtures[J]. Journal of Membrane Science, 2015, 489: 144-152. |
| [29] | MAJOONI Y, MORTAHEB H R, KHODADADI DIZAJI A. Enhancement in pervaporative performance of PDMS membrane for separation of styrene from wastewater by hybridizing with reduced graphene oxide[J]. Journal of Environmental Management, 2020, 261: 110189. |
| [30] | JAFARI Abolfazal, MORTAHEB Hamid Reza, GALLUCCI Fausto. Performance of octadecylamine-functionalized graphene oxide nanosheets in polydimethylsiloxane mixed matrix membranes for removal of toluene from water by pervaporation[J]. Journal of Water Process Engineering, 2022, 45: 102497. |
| [31] | XU Nong, WANG Weihao, LIU Qiao, et al. Enhanced pervaporation of the poly (dimethylsiloxane) (PDMS) mixed matrix membrane based on the self-assembly of multidimensional carbon nanomaterials[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 525-538. |
| [32] | JANJHI Farooque Ahmed, CHANDIO Imamdin, JANWERY Dahar, et al. MoS2-containing composite membranes for separation of environmental energy-relevant liquid and gas mixtures: A comprehensive review[J]. Chemical Engineering Research and Design, 2023, 199: 327-347. |
| [33] | FANG Lijun, CHEN Jianhua, WANG Jingmei, et al. Hydrophobic two-dimensional MoS2 nanosheets embedded in a polyether copolymer block amide (PEBA) membrane for recovering pyridine from a dilute solution[J]. ACS Omega, 2021, 6(4): 2675-2685. |
| [34] | HOU Ziman, PENG Ping, LAN Yongqiang, et al. Effect of MoS2 yolk-shell nanostructure on the thiophene separation performance of PEG membrane[J]. Advances in Polymer Technology, 2022, 2022(1): 5780884. |
| [35] | CHOUDHARI Santosh K, CERRONE Federico, WOODS Trevor, et al. Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 163-170. |
| [36] | GALLARDO Marwin R, CIOU Jyun-Xiang, WANG Chen-Hsiu, et al. Mussel-inspired modification of 2D MoS2 to construct a hybrid nanocomposite membrane with enhanced pervaporation dehydration of isopropanol[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111748. |
| [37] | 王雪莉, 杨卫亚, 张会成, 等. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940. |
| WANG Xueli, YANG Weiya, ZHANG Huicheng, et al. Interfacial modification method of MOF-based mixed matrix membrane and its gas separation performance[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 928-940. | |
| [38] | XIE Yun, WU Xinyue, SHI Yuxin, et al. Recent progress in 2D metal-organic framework-related materials[J]. Small, 2024, 20(1): 2305548. |
| [39] | 周胜, 侯倩倩, 魏嫣莹, 等. 金属有机骨架膜的制备与应用进展[J]. 化工进展, 2019, 38(1): 467-484. |
| ZHOU Sheng, HOU Qianqian, WEI Yanying, et al. Recent progress on the preparation and applications of metal organic framework membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 467-484. | |
| [40] | MAO Heng, ZHEN Honggang, AHMAD Ali, et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation[J]. Journal of Membrane Science, 2019, 582: 307-321. |
| [41] | XU Lihao, LI Yan, LI Shenhui, et al. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation[J]. Journal of Membrane Science, 2022, 656: 120605. |
| [42] | 边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883. |
| BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883. | |
| [43] | MENG Yi, LUO Yi, SHI Jilong, et al. 2D and 3D porphyrinic covalent organic frameworks: The influence of dimensionality on functionality[J]. Angewandte Chemie International Edition, 2020, 59(9): 3624-3629. |
| [44] | SHAO Mingchao, LIU Yunqi, GUO Yunlong. Customizable 2D covalent organic frameworks for optoelectronic applications[J]. Chinese Journal of Chemistry, 2023, 41(10): 1260-1285. |
| [45] | YANG Hao, WU Hong, YAO Zhaoquan, et al. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation[J]. Journal of Materials Chemistry A, 2018, 6(2): 583-591. |
| [46] | CAO Zishu, ISKHAKOVA Landysh, SUN Xinhui, et al. ZSM-5 zeolite nanosheet-based membranes on porous polyvinylidene fluoride for high-flux desalination[J]. ACS Applied Nano Materials, 2021, 4(3): 2895-2902. |
| [47] | LIU Yi. Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1257-1271. |
| [48] | CAO Zishu, ZENG Shixuan, XU Zhi, et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Science Advances, 2018, 4(11): eaau8634. |
| [49] | LIU Gongping, JIN Wanqin. Pervaporation membrane materials: Recent trends and perspectives[J]. Journal of Membrane Science, 2021, 636: 119557. |
| [50] | WANG Tingyuan, ZOU Changlong, LIN Li-Chiang. Asymmetric nanoporous membranes for ethanol/water pervaporation separation and their design[J]. Physical Chemistry Chemical Physics, 2023, 25(40): 27244-27249. |
| [51] | ZOU Changlong, LIN Li-Chiang. Exploring the potential and design of zeolite nanosheets as pervaporation membranes for ethanol extraction[J]. Chemical Communications, 2018, 54(94): 13200-13203. |
| [1] | 任鹏锟, 仲兆平, 张小霓, 杨宇轩, 冉真真. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040. |
| [2] | 杨璐, 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东. 合成液中水含量调控Ge-ZSM-5膜的乙二醇脱水性能[J]. 化工进展, 2025, 44(2): 982-990. |
| [3] | 陈晓乐, 李娜, 陈霖宇, 周屈兰. ZIFs/PDMDES共混基质膜的制备及其在水溶液中渗透汽化分离乙醇的应用[J]. 化工进展, 2025, 44(1): 407-414. |
| [4] | 邵威, 马壮, 郑宏玮, 刘光举, 高翔, 谢健, 和庆钢. 有机电极材料在水系电池中的应用研究进展[J]. 化工进展, 2024, 43(7): 3872-3890. |
| [5] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
| [6] | 范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 芴基、酰亚胺基和萘基聚合物气体分离膜的研究进展[J]. 化工进展, 2024, 43(4): 1897-1911. |
| [7] | 代化, 吴军, 周章华, 张斌. 高能量密度及高功率特性锂一次电池研究进展[J]. 化工进展, 2024, 43(12): 6680-6691. |
| [8] | 李文鹏, 刘晴, 杨志荣, 高展鹏, 王景涛, 周鸣亮, 张金利. 液相剥离法高效制备石墨烯的研究进展[J]. 化工进展, 2024, 43(1): 215-231. |
| [9] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
| [10] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
| [11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
| [12] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
| [13] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
| [14] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
| [15] | 张国春, 周志辉, 吴红丹. 基于α-Al2O3载体管的新型MXene膜异丙醇脱水性能[J]. 化工进展, 2023, 42(10): 5381-5389. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |