化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2811-2824.DOI: 10.16085/j.issn.1000-6613.2024-1982
• CO2减排利用 • 上一篇
李煜真1,2(
), 贺铭敬1,2, 王皓明3, 马小清1, 刘立成3, 李福利1,4(
)
收稿日期:2024-12-04
修回日期:2025-03-27
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
李福利
作者简介:李煜真(1999—),男,硕士研究生,研究方向为一碳气体生物转化与利用。E-mail:liyz@qibebt.ac.cn。
基金资助:
LI Yuzhen1,2(
), HE Mingjing1,2, WANG Haoming3, MA Xiaoqing1, LIU Licheng3, LI Fuli1,4(
)
Received:2024-12-04
Revised:2025-03-27
Online:2025-05-25
Published:2025-05-20
Contact:
LI Fuli
摘要:
利用微生物发酵一碳气体生产生物燃料及化学品,是当今实现碳资源捕捉利用和绿色生物制造的重要途径之一。CO2和CO、甲烷、甲醇以及甲酸等含有一个碳原子的物质被称为一碳(one carbon,C1)资源,其来源广泛且价格低廉,有望成为生物制造的替代原料。C1原料生物转化有助于缓解温室效应、助力“碳中和”目标。本文总结了近年来以CO2为原料通过微生物炼制生产重要能源和化学品的研究进展,论述CO2的生物代谢途径以及产物合成途径,讨论以CO2为原料的C1生物炼制中微生物的工程化改造,并展望未来绿色生物制造的新路线。
中图分类号:
李煜真, 贺铭敬, 王皓明, 马小清, 刘立成, 李福利. 以CO2为原料的第三代生物炼制现状[J]. 化工进展, 2025, 44(5): 2811-2824.
LI Yuzhen, HE Mingjing, WANG Haoming, MA Xiaoqing, LIU Licheng, LI Fuli. Current status of the third-generation carbon-one biorefinery using CO2 as raw material[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2811-2824.
| 代谢途径 | 关键酶 | 代谢特点 | 是否 厌氧 | 能量需求(以 ATP数量计算) | 还原力需求(以 NAD(P)H数量计算) | 能量 来源 |
|---|---|---|---|---|---|---|
| 卡尔文循环 | RuBisCO | 与磷酸戊糖途径密切相关 | 否 | 9 | 4 | 光能 |
| 伍德-永达尔途径 | CO dehydrogenase, formate dehydrogenase, hydrogenase | 直接还原CO2 | 是 | <1 | 4 | 氢气 |
| 还原性甘氨酸途径 | reductive glycine cleavage complex | 直接还原CO2 | 否 | 2 | 4 | 光能、硫 |
| 二羧酸/4-羟基丁酸循环 | 4-hydroxy butyryl-CoA dehydratase | 通过pyruvate synthase固定1分子CO2,通过PEP羧化酶固定1分子碳酸氢盐 | 是 | 5 | 4 | 氢气、硫 |
| 3-羟基丙酸/4-羟基丁酸循环 | 4-hydroxy butyryl-CoA dehydratase | 通过acetyl-CoA/propionyl-CoA羧化酶固定2分子碳酸氢盐 | 否 | 6 | 4 | 氢气、氧气 |
| 3-羟基丙酸双循环 | malonyl-CoA reductase, propionyl-CoA synthase | 通过acetyl-CoA/propionyl-CoA羧化酶固定2分子碳酸氢盐 | 否 | 7 | 4 | 光能、硫 |
| 还原性三羧酸循环 | ATP-citrate lyase, 2-ketoglutarate synthase | 通过逆转TCA循环来固定2分子CO2 | 否 | 2 | 4 | 光能、硫 |
表1 不同代谢途径特点
| 代谢途径 | 关键酶 | 代谢特点 | 是否 厌氧 | 能量需求(以 ATP数量计算) | 还原力需求(以 NAD(P)H数量计算) | 能量 来源 |
|---|---|---|---|---|---|---|
| 卡尔文循环 | RuBisCO | 与磷酸戊糖途径密切相关 | 否 | 9 | 4 | 光能 |
| 伍德-永达尔途径 | CO dehydrogenase, formate dehydrogenase, hydrogenase | 直接还原CO2 | 是 | <1 | 4 | 氢气 |
| 还原性甘氨酸途径 | reductive glycine cleavage complex | 直接还原CO2 | 否 | 2 | 4 | 光能、硫 |
| 二羧酸/4-羟基丁酸循环 | 4-hydroxy butyryl-CoA dehydratase | 通过pyruvate synthase固定1分子CO2,通过PEP羧化酶固定1分子碳酸氢盐 | 是 | 5 | 4 | 氢气、硫 |
| 3-羟基丙酸/4-羟基丁酸循环 | 4-hydroxy butyryl-CoA dehydratase | 通过acetyl-CoA/propionyl-CoA羧化酶固定2分子碳酸氢盐 | 否 | 6 | 4 | 氢气、氧气 |
| 3-羟基丙酸双循环 | malonyl-CoA reductase, propionyl-CoA synthase | 通过acetyl-CoA/propionyl-CoA羧化酶固定2分子碳酸氢盐 | 否 | 7 | 4 | 光能、硫 |
| 还原性三羧酸循环 | ATP-citrate lyase, 2-ketoglutarate synthase | 通过逆转TCA循环来固定2分子CO2 | 否 | 2 | 4 | 光能、硫 |
图3 伍德-永达尔途径Formate—甲酸;10-formyl-THF—10-甲酰四氢叶酸;5,10-methenyl-THF—5,10-次甲基四氢叶酸;5,10-methylene-THF—5,10-亚甲基四氢叶酸;5-methyl-THF—5-甲基四氢叶酸;CoFeS—钴铁硫蛋白;Acetyl-CoA—乙酰辅酶A
图4 还原性甘氨酸途径Formate—甲酸;THF—四氢叶酸;10-formyl-THF—10-甲酰四氢叶酸;5,10-methenyl-THF—5,10-次甲基四氢叶酸;5,10-methylene-THF—5,10-亚甲基四氢叶酸;Glycine—甘氨酸;SHMT—丝氨酸羟甲基转移酶;Serine—丝氨酸;Pyruvate—丙酮酸
图5 DC/4HB 循环Acetyl-CoA—乙酰辅酶A;Pyruvate—丙酮酸;Phosphoenolpyruvate—磷酸烯醇式丙酮酸;Oxaloacetate—草酰乙酸;Malate—苹果酸;Fumarate—延胡索酸;Succinate—琥珀酸;Succinate semialdehyde—琥珀酸半醛;4-hydroxybutyrate—4-羟基丁酸;Crotonyl-CoA—巴豆酰辅酶A;3-hydroxybutyryl-CoA—3-羟基丙酰辅酶A;Acetoacetyl-CoA—乙酰乙酰辅酶A
图6 3HP/4HB循环Acetyl-CoA—乙酰辅酶A;Malonyl-CoA—丙二酰辅酶A;Malonate semialdehyde—丙二酰半醛;3-hydroxypropionate—3-羟基丙酸;3-hydroxypropionyl-CoA—3-羟基丁酰辅酶A;Acrylyl-CoA—丙烯酰辅酶A;Propionyl-CoA—丙酰辅酶A;Methylmalonyl-CoA—甲基丙二酰辅酶A;Succinyl-CoA—琥珀酰辅酶A;Succinate semialdehyde—琥珀酸半醛;4-hydroxybutyrate—4-羟基丁酸;Crotonyl-CoA—巴豆酰辅酶A;3-hydroxybutyryl-CoA—3-羟基丙酰辅酶A;Acetoacetyl-CoA—乙酰乙酰辅酶A
图7 3-HP双循环Acetyl-CoA—乙酰辅酶A;Malonyl-CoA—丙二酰辅酶A;Malonate semialdehyde—丙二酸半醛;3-hydroxypropionyl-CoA—3-羟基丙酰辅酶A;Acrylyl-CoA—丙烯酰辅酶A;Propionyal-CoA—丙酰辅酶A;第一循环—Methylmalonyl-CoA—甲基丙二酰辅酶A;Succinyl-CoA—琥珀酰辅酶A;Succinate—琥珀酸;UOred/UOox—某还原态蛋白/某氧化态蛋白;Fumarate—延胡索酸;Malate—苹果酸;Malyl-CoA—苹果酰辅酶A;Glyoxylate—乙醛酸;第二循环—Metylmalyl-CoA—甲基苹果酰辅酶A;Mesaconyl-CoA—中康酰辅酶A;Citramalyl-CoA—柠苹酸辅酶A;Pyruvate—丙酮酸
图8 还原TCA循环Succinate—琥珀酸;Succinyl-CoA—琥珀酰辅酶A;Fdred/Fdox—还原/氧化态铁氧还蛋白;2-Ketoglutarate—2-酮戊二酸;Isocitrate—异柠檬酸;Aconitate—乌头酸;Citrate—柠檬酸;Acetyl-CoA—乙酰辅酶A;Oxaloacetate—草酰乙酸;Matale—苹果酸;Fumarate—延胡索酸
| 57 | LUO Shanshan, DIEHL Christoph, HE Hai, et al. Construction and modular implementation of the THETA cycle for synthetic CO2 fixation[J]. Nature Catalysis, 2023, 6: 1228-1240. |
| 58 | XIAO Lu, LIU Guoxia, GONG Fuyu, et al. A minimized synthetic carbon fixation cycle[J]. ACS Catalysis, 2022, 12(1): 799-808. |
| 59 | LIU Jianming, ZHANG Han, XU Yingying, et al. Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system[J]. Nature Communications, 2023, 14(1): 2772. |
| 60 | GONG Fuyu, LI Yin. Fixing carbon, unnaturally[J]. Science, 2016, 354(6314): 830-831. |
| 61 | EMERSON David Frederic, STEPHANOPOULOS Gregory. Limitations in converting waste gases to fuels and chemicals[J]. Current Opinion in Biotechnology, 2019, 59: 39-45. |
| 62 | TRAN Quang Hon, UNDEN Gottfried. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation[J]. European Journal of Biochemistry, 1998, 251(1/2): 538-543. |
| 63 | FUCHS Georg. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life?[J]. Annual Review of Microbiology, 2011, 65: 631-658. |
| 64 | 文志琼, 李煜真, 张金刚, 等. 化能驱动的产乙酸菌转化利用CO2研究进展[J]. 合成生物学, 2023, 4(6): 1178-1190. |
| WEN Zhiqiong, LI Yuzhen, ZHANG Jingang, et al. Progress on bio-fixation and utilization of CO2 in acetogens driven by chemical energy[J]. Synthetic Biology Journal, 2023, 4(6): 1178-1190. | |
| 65 | ANNAN Florence J, Bakir AL-SINAWI, HUMPHREYS Christopher M, et al. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum [J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4633-4648. |
| 66 | EMERSON David F, WOOLSTON Benjamin M, LIU Nian, et al. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation[J]. Biotechnology and Bioengineering, 2019, 116(2): 294-306. |
| 67 | HAAS Thomas, KRAUSE Ralf, WEBER Rainer, et al. Technical photosynthesis involving CO2 electrolysis and fermentation[J]. Nature Catalysis, 2018, 1: 32-39. |
| 68 | SUN Xiao, ATIYEH Hasan K, ZHANG Hailin, et al. Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar[J]. Applied Energy, 2019, 236: 1269-1279. |
| 69 | HEFFERNAN James K, VALGEPEA Kaspar, DE SOUZA PINTO LEMGRUBER Renato, et al. Enhancing CO2-valorization using Clostridium autoethanogenum for sustainable fuel and chemicals production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 204. |
| 70 | STRAUB Melanie, DEMLER Martin, Dirk WEUSTER-BOTZ, et al. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii [J]. Journal of Biotechnology, 2014, 178: 67-72. |
| 71 | LEANG Ching, UEKI Toshiyuki, NEVIN Kelly P, et al. A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen[J]. Applied and Environmental Microbiology, 2013, 79(4): 1102-1109. |
| 72 | CHENG Chi, LI Weiming, LIN Meng, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose[J]. Bioresource Technology, 2019, 284: 415-423. |
| 73 | 蓝瑟科技纽西兰有限公司. 醇的微生物制备方法: CN101998997A[P]. 2011-03-30. |
| LANZATECH NEW ZEALAND LIMITED. Microbial fermentation techniques for ethanol production: CN101998997A[P]. 2011-03-30. | |
| 74 | Siemens, Evonik. CO2 for a clean performance: Rheticus research project enters phase 2[EB/OL]. (2019-10-10) [2024-11-02]. . |
| 75 | LIU Cong, MAO Lihui, ZHENG Xiongmin, et al. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H2 and CO2 under different temperature conditions[J]. MicrobiologyOpen, 2019, 8(5): e00715. |
| 76 | HUBER Harald, THOMM Michael, Helmut KÖNIG, et al. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen[J]. Archives of Microbiology, 1982, 132(1): 47-50. |
| 77 | SCHIRALDI Chiara, GIULIANO Mariateresa, DE ROSA Mario. Perspectives on biotechnological applications of Archaea [J]. Archaea, 2002, 1(2): 75-86. |
| 78 | DE LISE Federica, IACONO Roberta, MORACCI Marco, et al. Archaea as a model system for molecular biology and biotechnology[J]. Biomolecules, 2023, 13(1): 114. |
| 79 | WONG Tuck Seng. Carbon dioxide capture and utilization using biological systems: Opportunities and challenges[J]. Journal of Bioprocessing & Biotechniques, 2014, 4(3): 1-15. |
| 80 | OLIVER Neal J, RABINOVITCH-DEERE Christine A, CARROLL Austin L, et al. Cyanobacterial metabolic engineering for biofuel and chemical production[J]. Current Opinion in Chemical Biology, 2016, 35: 43-50. |
| 81 | LEE Hyun Jeong, CHOI Jaeyeon, LEE Sunmi, et al. Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1087-1092. |
| 82 | LAI Martin J, LAN Ethan I. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria[J]. Biotechnology and Bioengineering, 2019, 116(4): 893-903. |
| 83 | LI Dingyi, DONG Hong, CAO Xupeng, et al. Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa [J]. Nature Communications, 2023, 14(1): 5337. |
| 84 | NÜRNBERG Dennis J, MORTON Jennifer, SANTABARBARA Stefano, et al. Photochemistry beyond the red limit in chlorophyll f-containing photosystems[J]. Science, 2018, 360(6394): 1210-1213. |
| 85 | MORENO Juan Ignacio, Raquel MARTÍN, CASTRESANA Carmen. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress[J]. The Plant Journal, 2005, 41(3): 451-463. |
| 86 | GABRIEL ACIÉN FERNÁNDEZ F, GONZÁLEZ-LÓPEZ C V, FERNÁNDEZ SEVILLA J M, et al. Conversion of CO2 into biomass by microalgae: How realistic a contribution may it be to significant CO2 removal?[J]. Applied Microbiology and Biotechnology, 2012, 96(3): 577-586. |
| 87 | ADENIYI Oladapo Martins, AZIMOV Ulugbek, BURLUKA Alexey. Algae biofuel: Current status and future applications[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 316-335. |
| 88 | MOAZAMI Nasrin, ASHORI Alireza, RANJBAR Reza, et al. Large-scale biodiesel production using microalgae biomass of Nannochloropsis [J]. Biomass and Bioenergy, 2012, 39: 449-453. |
| 89 | 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学: 化学, 2014, 44(1): 63-78. |
| ZHOU Wenguang, RUAN Rongsheng. Biological mitigation of carbon dioxide via microalgae: Recent development and future direction[J]. Scientia Sinica Chimica), 2014, 44(1): 63-78. | |
| 1 | LIU Zihe, WANG Kai, CHEN Yun, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3: 274-288. |
| 2 | 许敬亮, 常春, 韩秀丽, 等. 合成气乙醇发酵技术研究进展[J]. 化工进展, 2019, 38(1): 586-597. |
| XU Jingliang, CHANG Chun, HAN Xiuli, et al. Research progress on bioethanol production technologies through syngas fermentation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 586-597. | |
| 3 | global BP. BP Energy Outlook 2024: Region insight[R/OL]. (2024-08-07) [2024-11-20]. London: BP, 2024. . |
| 4 | HU Kexiang, RAGHUTLA Chandrashekar, CHITTEDI Krishna Reddy, et al. The effect of energy resources on economic growth and carbon emissions: A way forward to carbon neutrality in an emerging economy[J]. Journal of Environmental Management, 2021, 298: 113448. |
| 5 | WANG Fan, JIANG Xinglin, LIU Yuchen, et al. Tobacco as a promising crop for low-carbon biorefinery[J]. The Innovation, 2024, 5(5): 100687. |
| 6 | 王凯, 刘子鹤, 陈必强, 等. 微生物利用二氧化碳合成燃料及化学品——第三代生物炼制[J]. 合成生物学, 2020, 1(1): 60-70. |
| WANG Kai, LIU Zihe, CHEN Biqiang, et al. Microbial utilization of carbon dioxide to synthesize fuels and chemicals—third-generation biorefineries[J]. Synthetic Biology Journal, 2020, 1(1): 60-70. | |
| 7 | 李婉麒, 杨凤娟, 贾德臣, 等. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
| LI Wanqi, YANG Fengjuan, JIA Dechen, et al. Biological utilization and conversion of syngas[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. | |
| 8 | KARLSON Brian, BELLAVITIS Cristiano, FRANCE Nadine. Commercializing LanzaTech, from waste to fuel: An effectuation case[J]. Journal of Management & Organization, 2021, 27(1): 175-196. |
| 9 | Stefano CESTELLOS-BLANCO, ZHANG Hao, KIM Ji Min, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3: 245-255. |
| 90 | GUPTA Jitendra, GUPTA Reena. Nutraceutical status and scientific strategies for enhancing production of omega-3 fatty acids from microalgae and their role in healthcare[J]. Current Pharmaceutical Biotechnology, 2020, 21(15): 1616-1631. |
| 91 | DJURICIC Ivana, CALDER Philip C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021[J]. Nutrients, 2021, 13(7): 2421. |
| 92 | XIN Yi, LU Yandu, LEE Yiying, et al. Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases[J]. Molecular Plant, 2017, 10(12): 1523-1539. |
| 93 | GREGORY James A, LI Fengwu, TOMOSADA Lauren M, et al. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission[J]. PLoS One, 2012, 7(5): e37179. |
| 94 | 胡贵鹏, 宋伟, 高聪, 等. 异养微生物固定CO2的合成生物学研究进展[J]. 生物工程学报, 2022, 38(4): 1339-1350. |
| HU Guipeng, SONG Wei, GAO Cong, et al. Advances in synthetic biology of CO2 fixation by heterotrophic microorganisms[J]. Chinese Journal of Biotechnology, 2022, 38(4): 1339-1350. | |
| 95 | Víctor GUADALUPE-MEDINA, WOUTER WISSELINK H, LUTTIK Marijke Ah, et al. Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast[J]. Biotechnology for Biofuels, 2013, 6(1): 125. |
| 96 | GUO Junling, Miguel SUÁSTEGUI, SAKIMOTO Kelsey K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
| 97 | HU Guipeng, LI Zehong, MA Danlei, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals[J]. Nature Catalysis, 2021, 4: 395-406. |
| 98 | 陶雨萱, 郭亮, 高聪, 等. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
| TAO Yuxuan, GUO Liang, GAO Cong, et al. Progress in metabolic engineering of microorganisms for CO2 fixation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. | |
| 99 | MOON Soo Yun, HONG Soon Ho, KIM Tae Yong, et al. Metabolic engineering of Escherichia coli for the production of malic acid[J]. Biochemical Engineering Journal, 2008, 40(2): 312-320. |
| 10 | ATSUMI Shota, HIGASHIDE Wendy, LIAO James C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. |
| 11 | Volker DÖRING, DARII Ekaterina, YISHAI Oren, et al. Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution[J]. ACS Synthetic Biology, 2018, 7(9): 2029-2036. |
| 12 | ZHAO Ran, LIU Yanqiang, ZHANG Huan, et al. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation[J]. ACS Synthetic Biology, 2019, 8(10): 2270-2279. |
| 13 | CLOMBURG James M, CRUMBLEY Anna M, GONZALEZ Ramon. Industrial biomanufacturing: The future of chemical production[J]. Science, 2017, 355(6320): aag0804. |
| 14 | GLEIZER Shmuel, Roee BEN-NISSAN, BAR-ON Yinon M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263.e12. |
| 15 | GASSLER Thomas, SAUER Michael, GASSER Brigitte, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 [J]. Nature Biotechnology, 2020, 38(2): 210-216. |
| 16 | BAUMSCHABL Michael, Özge ATA, MITIC Bernd M, et al. Conversion of CO2 into organic acids by engineered autotrophic yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(47): e2211827119. |
| 17 | QIAO Weibo, XU Shijie, LIU Zihe, et al. Challenges and opportunities in C1-based biomanufacturing[J]. Bioresource Technology, 2022, 364: 128095. |
| 18 | DEMIRBAS Ayhan. Progress and recent trends in biofuels[J]. Progress in Energy and Combustion Science, 2007, 33(1): 1-18. |
| 19 | BUNGAY Henry R. Biomass refining[J]. Science, 1982, 218(4573): 643-646. |
| 20 | CHERUBINI Francesco. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals[J]. Energy Conversion and Management, 2010, 51(7): 1412-1421. |
| 21 | SOLOMON Barry D, BARNES Justin R, HALVORSEN Kathleen E. Grain and cellulosic ethanol: History, economics, and energy policy[J]. Biomass and Bioenergy, 2007, 31(6): 416-425. |
| 22 | Stevens CHRISTIAN V., ROLAND Verhé. Renewable Bioresources: Scope and modification for non-food applications[M]. John Wiley & Sons, Ltd, 2004. |
| 23 | CHEN Song. Green oil production by hydroprocessing[J]. International Journal of Clean Coal and Energy, 2012, 1(4): 43-55. |
| 24 | Martha SIMPSON-HOLLEY, HIGSON Adrian Peter, EVANS Geraint. Renewables: Bring on the biorefinery[J]. The Chemical Engineer, 2007: 46-48. |
| 25 | 余强, 庄新姝, 袁振宏, 等. 木质纤维素类生物质制取燃料及化学品的研究进展[J]. 化工进展, 2012, 31(4): 784-791. |
| YU Qiang, ZHUANG Xinshu, YUAN Zhenhong, et al. Research progress on fuel and chemicals production from lignocellulose biomass[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 784-791. | |
| 26 | GOMEZ Leonardo D, STEELE-KING Clare G, MCQUEEN-MASON Simon J. Sustainable liquid biofuels from biomass: The writing’s on the walls[J]. New Phytologist, 2008, 178(3): 473-485. |
| 27 | BAUER Fredric, COENEN Lars, HANSEN Teis, et al. Technological innovation systems for biorefineries: A review of the literature[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(3): 534-548. |
| 28 | 史硕博, 孟琼宇, 乔玮博, 等. 塑造低碳经济的第三代固碳生物炼制[J]. 合成生物学, 2020, 1(1): 44-59. |
| SHI Shuobo, MENG Qiongyu, QIAO Weibo, et al. Establishing carbon dioxide-based third-generation biorefinery for a sustainable low-carbon economy[J]. Synthetic Biology Journal, 2020, 1(1): 44-59. | |
| 29 | ADENIYI Oladapo Martins, AZIMOV Ulugbek, BURLUKA Alexey. Algae biofuel: Current status and future applications[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 316-335. |
| 30 | STEEN Eric J, KANG Yisheng, BOKINSKY Gregory, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463(7280): 559-562. |
| 31 | GUO Daoyi, ZHU Jing, DENG Zixin, et al. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways[J]. Metabolic Engineering, 2014, 22: 69-75. |
| 32 | TAN Xiaoming, YAO Lun, GAO Qianqian, et al. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria[J]. Metabolic Engineering, 2011, 13(2): 169-176. |
| 33 | CALVIN M. The path of carbon in photosynthesis[J]. Science, 1962, 135(3507): 879-889. |
| 34 | SERVAITES Jerome C, GEIGER Donald R. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase by metabolites[J]. Journal of Experimental Botany, 1995, 46(special_issue): 1277-1283. |
| 35 | 李春荣, 张馨, 刘翠敏. 卡尔文-本森-巴萨姆循环的调节[J]. 生命科学, 2024, 36(10): 1213-1225. |
| LI Chunrong, ZHANG Xin, LIU Cuimin. Regulation of the Calvin-Benson-bassham cycle[J]. Chinese Bulletin of Life Sciences, 2024, 36(10): 1213-1225. | |
| 36 | SAGE Rowan F. Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature[J]. Journal of Experimental Botany, 2002, 53(369): 609-620. |
| 37 | CLAASSENS Nico J. A warm welcome for alternative CO2 fixation pathways in microbial biotechnology[J]. Microbial Biotechnology, 2017, 10(1): 31-34. |
| 38 | SCHULMAN Marvin, PARKER Donald, LJUNGDAHL Lars G, et al. Total synthesis of acetate from CO2V. determination by mass analysis of the different types of acetate formed from 13 heterotrophic bacteria[J]. Journal of Bacteriology, 1972, 109(2): 633-644. |
| 39 | BARKER H A, KAMEN M D. Carbon dioxide utilization in the synthesis of acetic acid by clostridium thermoaceticum[J]. Proceedings of the National Academy of Sciences of the United States of America, 1945, 31(8): 219-225. |
| 40 | LJUNGDAHL L G. The autotrophic pathway of acetate synthesis in acetogenic bacteria[J]. Annual Review of Microbiology, 1986, 40: 415-450. |
| 41 | PEZACKA E, WOOD H G. Acetyl-CoA pathway of autotrophic growth. Identification of the methyl-binding site of the CO dehydrogenase[J]. Journal of Biological Chemistry, 1988, 263(31): 16000-16006. |
| 42 | RAGSDALE Stephen W, PIERCE Elizabeth. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1784(12): 1873-1898. |
| 43 | RAGSDALE Stephen W. Enzymology of the wood-ljungdahl pathway of acetogenesis[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 129-136. |
| 44 | Irene SÁNCHEZ-ANDREA, GUEDES Iame Alves, HORNUNG Bastian, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans [J]. Nature Communications, 2020, 11(1): 5090. |
| 45 | HUBER Harald, GALLENBERGER Martin, JAHN Ulrike, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22): 7851-7856. |
| 46 | BERG Ivan A, KOCKELKORN Daniel, BUCKEL Wolfgang, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea [J]. Science, 2007, 318(5857): 1782-1786. |
| 47 | FAST Alan G, PAPOUTSAKIS Eleftherios T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals[J]. Current Opinion in Chemical Engineering, 2012, 1(4): 380-395. |
| 48 | STRAUSS Gerhard, FUCHS Georg. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle[J]. European Journal of Biochemistry, 1993, 215(3): 633-643. |
| 49 | ZARZYCKI Jan, FUCHS Georg. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus [J]. Applied and Environmental Microbiology, 2011, 77(17): 6181-6188. |
| 50 | 王洪杰, 倪俊, 张怡, 等. 新型固碳途径——3-羟基丙酸循环的研究进展[J]. 微生物学通报, 2013, 40(2): 304-315. |
| WANG Hongjie, NI Jun, ZHANG Yi, et al. The progress of studies on a unique carbon dioxide fixation pathway: 3-hydroxypropionate cycle[J]. Microbiology China, 2013, 40(2): 304-315. | |
| 51 | SMITH Eric, MOROWITZ Harold J. Universality in intermediary metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(36): 13168-13173. |
| 52 | MALL Achim, SOBOTTA Jessica, HUBER Claudia, et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium[J]. Science, 2018, 359(6375): 563-567. |
| 53 | CUI Zhiyong, ZHONG Yutao, SUN Zhijie, et al. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica [J]. Nature Communications, 2023, 14(1): 8480. |
| 54 | CAI Tao, SUN Hongbing, QIAO Jing, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
| 55 | SCHWANDER Thomas, Tobias J ERB. Do it your (path)way-synthetische Wege zur CO2-Fixierung[J]. BIOspektrum, 2016, 22(6): 590-592. |
| 56 | DOWAIDAR Moataz. Synthetic biology of metabolic cycles for enhanced CO2 capture and sequestration[J]. Bioorganic Chemistry, 2024, 153: 107774. |
| 100 | HENARD Calvin A, SMITH Holly, DOWE Nancy, et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium[J]. Scientific Reports, 2016, 6: 21585. |
| 101 | 张俊哲, 张全, 刘自勇, 等. 细菌微室及其在合成生物学中的应用进展[J]. 南京工业大学学报(自然科学版), 2022, 44(5): 490-499. |
| ZHANG Junzhe, ZHANG Quan, LIU Ziyong, et al. Bacterial microcompartments and application progress in synthetic biology[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(5): 490-499. | |
| 102 | BONACCI Walter, TENG Poh K, AFONSO Bruno, et al. Modularity of a carbon-fixing protein organelle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(2): 478-483. |
| 103 | ZHANG Yuwei, ZHOU Juan, ZHANG Yuchen, et al. Auxiliary module promotes the synthesis of carboxysomes in E. coli to achieve high-efficiency CO2 assimilation[J]. ACS Synthetic Biology, 2021, 10(4): 707-715. |
| 104 | MATTOZZI Matthew d, ZIESACK Marika, VOGES Mathias J, et al. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth[J]. Metabolic Engineering, 2013, 16: 130-139. |
| 105 | ANTONOVSKY Niv, GLEIZER Shmuel, NOOR Elad, et al. Sugar synthesis from CO2 in escherichia coli[J]. Cell, 2016, 166(1): 115-125. |
| [1] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [2] | 唐永圣, 顾子蕴, 陈修来. 微生物细胞活力调控生产丁二酸[J]. 化工进展, 2025, 44(5): 2489-2504. |
| [3] | 倪新, 高教琪, 周雍进. 酵母细胞工厂用于木质纤维素生物转化研究进展[J]. 化工进展, 2025, 44(5): 2475-2488. |
| [4] | 盛华康, 张博, 申晓林, 孙新晓, 王佳, 袁其朋. 微生物合成白藜芦醇及其衍生物[J]. 化工进展, 2025, 44(5): 2463-2474. |
| [5] | 王媛媛, 张翀, 韩双艳, 邢新会. 毕赤酵母利用甲醇生产重组蛋白技术的研究进展[J]. 化工进展, 2025, 44(5): 2441-2450. |
| [6] | 舒岗韦, 林钰程, 张为宏, 赵世强, 郑晓阳, 常春. 木糖生物炼制与高值化应用研究进展[J]. 化工进展, 2024, 43(7): 3798-3811. |
| [7] | 白毓黎, 白富栋, 张雷, 孙启梅, 李秀峥. 木质素基酚醛树脂的制备和过程优化[J]. 化工进展, 2024, 43(2): 1033-1038. |
| [8] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
| [9] | 郭峰, 张尚杰, 蒋羽佳, 姜万奎, 信丰学, 章文明, 姜岷. 一碳资源在酵母中的利用与转化[J]. 化工进展, 2023, 42(1): 30-39. |
| [10] | 徐丽洁, 刘豪杰, 薛瑞, 周小力, 周杰, 钱秀娟, 董维亮, 姜岷. 多学科交叉助力废塑料生物法循环回收利用[J]. 化工进展, 2022, 41(9): 5029-5036. |
| [11] | 李玲, 于泳, 胡永红. 发酵法生产利普司他汀的研究进展[J]. 化工进展, 2021, 40(4): 2251-2257. |
| [12] | 郭亮, 高聪, 张丽, 陈修来, 刘立明. 人工代谢路径适配性的研究进展[J]. 化工进展, 2021, 40(3): 1252-1261. |
| [13] | 周子康, 许平. 全局转录调控在细胞工厂构建中的应用与进展[J]. 化工进展, 2021, 40(3): 1248-1251. |
| [14] | 蔡的, 李树峰, 司志豪, 秦培勇, 谭天伟. 生物丁醇分离技术的研究进展及发展趋势[J]. 化工进展, 2021, 40(3): 1161-1177. |
| [15] | 高聪, 郭亮, 胡贵鹏, 陈修来, 刘立明. 微生物细胞工厂碳流调控进展[J]. 化工进展, 2021, 40(12): 6807-6817. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |