化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3492-3502.DOI: 10.16085/j.issn.1000-6613.2023-0891
• 资源与环境化工 • 上一篇
刘梦凡(), 王华伟(), 王亚楠, 张艳茹, 蒋旭彤, 孙英杰
收稿日期:
2023-05-30
修回日期:
2023-07-11
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
王华伟
作者简介:
刘梦凡(2002—),女,本科生,主要研究方向为水污染环境修复。E-mail: winniene@qq.com。
基金资助:
LIU Mengfan(), WANG Huawei(), WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie
Received:
2023-05-30
Revised:
2023-07-11
Online:
2024-06-15
Published:
2024-07-02
Contact:
WANG Huawei
摘要:
鉴于生物合成材料在水环境修复中成本低、环境友好、高效等优势,制备了Ce掺杂生物铁锰氧化物(Bio-FeMnCeO x ),以盐酸四环素(TC)为目标污染物,研究了Bio-FeMnCeO x 制备参数(Ce剂量、培养时间及样品处理方式等)和工艺条件(pH、PMS浓度、Bio-FeMnCeO x 剂量等)对Bio-FeMnCeO x 活化PMS降解TC的影响。通过自由基猝灭实验和电子顺磁共振(EPR)分析TC降解的主要活性氧物质种类和贡献率,推测了TC的降解路径和降解机制,验证了Bio-FeMnCeO x 的循环稳定性。结果表明:①通过生物合成法成功制备了Bio-FeMnCeO x,将其用于活化PMS降解TC具有良好的催化活性,在pH为11.0、PMS浓度200mg/L、Bio-FeMnCeO x 剂量为100mg/L、反应时间为60min时,TC的降解效率可达93.75%;②通过自由基猝灭和EPR鉴定的实验发现,Bio-FeMnCeO x /PMS体系主要的活性物质为·SO
中图分类号:
刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502.
LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502.
制备参数 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ce剂量 | |||
Ce-5 | 17.79 | 0.015 | 3.38 |
Ce-10 | 19.13 | 0.018 | 2.52 |
Ce-25 | 26.15 | 0.030 | 2.00 |
Ce-50 | 26.22 | 0.031 | 2.19 |
Ce-100 | 21.23 | 0.022 | 2.52 |
培养时间 | |||
3d | 36.57 | 0.037 | 1.75 |
5d | 23.56 | 0.022 | 1.63 |
7d | 22.09 | 0.025 | 2.19 |
9d | 45.34 | 0.048 | 1.88 |
11d | 52.07 | 0.043 | 1.63 |
表1 不同条件下Bio-FeMnCeO x 结构特性分析
制备参数 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ce剂量 | |||
Ce-5 | 17.79 | 0.015 | 3.38 |
Ce-10 | 19.13 | 0.018 | 2.52 |
Ce-25 | 26.15 | 0.030 | 2.00 |
Ce-50 | 26.22 | 0.031 | 2.19 |
Ce-100 | 21.23 | 0.022 | 2.52 |
培养时间 | |||
3d | 36.57 | 0.037 | 1.75 |
5d | 23.56 | 0.022 | 1.63 |
7d | 22.09 | 0.025 | 2.19 |
9d | 45.34 | 0.048 | 1.88 |
11d | 52.07 | 0.043 | 1.63 |
催化剂 | 条件 | 效率 | 参考文献 |
---|---|---|---|
磁性生物炭 | TC 20mg/L,PMS 0.07mmol/L,催化剂0.75g/L,120min | 85.50% | [ |
B-NC | TC 20mg/L,PMS 0.16mmol/L,催化剂0.13g/L,60min | 90.00% | [ |
PFSC-900 | TC 20mg/L,PMS 0.3g/L,催化剂0.4g/L,120min | 90.10% | [ |
Fe-N-CS-800 | TC 20mg/L,PMS 1mmol/L,催化剂0.2g/L,12min | 93.74% | [ |
Bio-FeMnCeO x | TC 20mg/L,PMS 10.2g/L,催化剂0.1g/L,60min | 93.75% | 本研究 |
表2 Bio-FeMnCeO x 和其他催化剂活化PMS性能比较
催化剂 | 条件 | 效率 | 参考文献 |
---|---|---|---|
磁性生物炭 | TC 20mg/L,PMS 0.07mmol/L,催化剂0.75g/L,120min | 85.50% | [ |
B-NC | TC 20mg/L,PMS 0.16mmol/L,催化剂0.13g/L,60min | 90.00% | [ |
PFSC-900 | TC 20mg/L,PMS 0.3g/L,催化剂0.4g/L,120min | 90.10% | [ |
Fe-N-CS-800 | TC 20mg/L,PMS 1mmol/L,催化剂0.2g/L,12min | 93.74% | [ |
Bio-FeMnCeO x | TC 20mg/L,PMS 10.2g/L,催化剂0.1g/L,60min | 93.75% | 本研究 |
1 | HUTCHINGS M I, TRUMAN A W, WILKINSON B. Antibiotics: Past, present and future[J]. Current Opinion in Microbiology, 2019, 51: 72-80. |
2 | 王振楠, 白默涵, 李晓晶, 等. 微生物降解四环素类抗生素的研究进展[J]. 农业环境科学学报, 2022, 41(12): 2779-2786. |
WANG Zhennan, BAI Mohan, LI Xiaojing, et al. Research progress on the microbial degradation of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2022, 41(12): 2779-2786 | |
3 | KLAUS K. Antibiotics in the aquatic environment — A review — Part I[J]. Chemosphere, 2009, 75(4): 417-434. |
4 | M-C DANNER, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. |
5 | ZHOU Qianqian, HONG Peidong, SHI Xu, et al. Efficient degradation of tetracycline by a novel nanoconfinement structure Cu2O/Cu@MXene composite[J]. Journal of Hazardous Materials, 2023, 448: 130995. |
6 | AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 2016-2059. |
7 | CAI Yanan, HE Jing, ZHANG Jinkang, et al. Antibiotic contamination control mediated by manganese oxidizing bacteria in a lab-scale biofilter[J]. Journal of Environmental Sciences, 2020, 98: 47-54. |
8 | CHENG Dongle, Huu Hao NGO, GUO Wenshan, et al. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches[J]. Journal of Hazardous Materials, 2020, 387: 121682. |
9 | LI Zhen, LI Miao, ZHANG Zhenya, et al. Antibiotics in aquatic environments of China: A review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110668. |
10 | WANG Jianlong, CHU Libing, WOJNÁROVITS L, et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview[J]. Science of the Total Environment, 2020, 744: 140997. |
11 | 唐海芳. 光/电催化/过硫酸盐氧化及耦合生物技术处理含抗生素废水[D]. 长沙: 湖南大学, 2021. |
TANG Haifang. Treatment of antibiotics-containing wastewater by photo/electrocatalysis/persulphate oxidation coupled with biotechnology[D]. Changsha: Hunan University, 2021. | |
12 | 陈建发, 林诚, 刘福权. 复合工艺处理以抗生素类制药为主的混合工业废水[J]. 工业水处理, 2014, 34(10): 91-94. |
CHEN Jianfa, LIN Cheng, LIU Fuquan. Studies on the treatment of antibiotics pharmacy-based mixed industrial wastewater using composite technology[J]. Industrial Water Treatment, 2014, 34(10): 91-94. | |
13 | ZHU Tingting, SU Zhongxian, LAI Wenxia, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776: 145906. |
14 | 郑常春, 李孝洪. 高级氧化法处理化工废水的应用研究[J]. 精细与专用化学品, 2017, 25(9): 36-41. |
ZHENG Changchun, LI Xiaohong. Study on the application of advanced oxidation process in chemical wastewater treatment[J]. Fine and Specialty Chemicals, 2017, 25(9): 36-41. | |
15 | AKBARI M Z, XU Yifeng, LU Zhikun, et al. Review of antibiotics treatment by advance oxidation processes[J]. Environmental Advances, 2021, 5: 100111. |
16 | WANG Jianlong, ZHUAN Run. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701: 135023. |
17 | 谢金伶, 蒲佳兴, 李思域, 等. 钴锰硫化物活化过硫酸盐强化降解盐酸四环素[J]. 中国环境科学, 2023, 43(2): 544-551. |
XIE Jinling, PU Jiaxing, LI Siyu, et al. Enhanced degradation of tetracycline hydrochloride by cobalt-manganese sulfide activated peroxymonosulfate[J]. China Environmental Science, 2023, 43(2): 544-551. | |
18 | GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
19 | 朱紫琦, 李立, 徐铭骏, 等. 菱形片状铁锰催化剂活化过硫酸盐降解四环素[J]. 中国环境科学, 2021, 41(11): 5142-5152. |
ZHU Ziqi, LI Li, XU Mingjun, et al. Rhombic sheet iron-manganese catalyst-activating peroxymonosulfate for tetracycline degradation[J]. China Environmental Science, 2021, 41(11): 5142-5152. | |
20 | 黄全佳. 纳米铁锰混合金属氧化物活化过一硫酸盐降解染料废水[J]. 环境污染与防治, 2021, 43(10): 1263-1268. |
HUANG Quanjia. Degradation of dye wastewater by nano iron-manganese mixed metal oxides activating peroxymonosulfate[J]. Environmental Pollution & Control, 2021, 43(10): 1263-1268. | |
21 | 朱建宇, 党清平, 杨帆, 等. MnFeCu-LDHs活化PMS降解氯四环素的效能及机制[J]. 环境工程学报, 2022, 16(12): 3895-3905. |
ZHU Jianyu, DANG Qingping, YANG Fan, et al. Degradation efficiency and mechanism of chlortetracycline by activation of peroxymonosulfate via MnFeCu-LDHs[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3895-3905. | |
22 | DU Zhiling, ZHANG Yunhai, XU Anlin, et al. Biogenic metal nanoparticles with microbes and their applications in water treatment: A review[J]. Environmental Science and Pollution Research, 2022, 29(3): 3213-3229. |
23 | TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic Manganese Oxides: Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. |
24 | LI Kangjie, XU Anlin, WU Donghong, et al. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides[J]. Bioresource Technology, 2021, 328: 124826. |
25 | DU Zhiling, LI Kangjie, ZHOU Shuangxi, et al. Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides[J]. Chemical Engineering Journal, 2020, 380: 122427. |
26 | XU Anlin, MENG Tong, FAN Siyan, et al. Bio-synthesized multi-metal oxides with varying Fe/Mn ratios and transitional metals (Ni, Ce, Al, Cu) for catalytic ozonation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109124. |
27 | XU Anlin, WU Donghong, ZHANG Ren, et al. Bio-synthesis of Co-doped FeMnO x and its efficient activation of peroxymonosulfate for the degradation of moxifloxacin[J]. Chemical Engineering Journal, 2022, 435: 134695. |
28 | WANG Anqi, ZHENG Zhikeng, WANG Hui, et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation[J]. Applied Catalysis B: Environmental, 2020, 277: 119171. |
29 | XU Anlin, FAN Siyan, MENG Tong, et al. Catalytic ozonation with biogenic Fe-Mn-Co oxides: Biosynthesis protocol and catalytic performance[J]. Applied Catalysis B: Environmental, 2022, 318: 121833. |
30 | VILLALOBOS M, TONER B, BARGAR J, et al. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2649-2662. |
31 | QIN Songyan, LIU Xiaolong, Wujuan LYU, et al. The mechanism of degradation polycyclic aromatic hydrocarbons by magnetic biogenic manganese oxides[J]. Biochemical Engineering Journal, 2023, 191: 108803. |
32 | MA Chuanxin, CHHIKARA S, XING Baoshan, et al. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 768-778. |
33 | QIAN Zihan, QIN Hanli, YAN Wenjie, et al. Enhancing charge transfer efficiency of cerium-iron oxides via Co regulated oxygen vacancies to boost peroxymonosulfate activation for tetracycline degradation[J]. Separation and Purification Technology, 2023, 314: 123524. |
34 | HUANG Guixiang, WANG Chuya, YANG Chuanwang, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618. |
35 | LUO Xuewen, SHEN Minxian, LIU Junhong, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. |
36 | XIE Jinling, CHEN Liu, LUO Xuan, et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B,N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism[J]. Separation and Purification Technology, 2022, 281: 119887. |
37 | HU Yi, CHEN Dezhi, ZHANG Rui, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway[J]. Journal of Hazardous Materials, 2021, 419: 126495. |
38 | CHEN Wenjin, HUANG Jin, SHEN Yaqian, et al. Fe-N co-doped coral-like hollow carbon shell toward boosting peroxymonosulfate activation for efficient degradation of tetracycline: Singlet oxygen-dominated non-radical pathway[J]. Journal of Environmental Sciences, 2023, 126: 470-482. |
39 | TIAN Na, TIAN Xike, NIE Yulun, et al. Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water[J]. Chemical Engineering Journal, 2018, 352: 469-476. |
40 | WANG Huawei, ZHANG Daoyong, MOU Shuyong, et al. Simultaneous removal of tetracycline hydrochloride and As(Ⅲ) using poorly-crystalline manganese dioxide[J]. Chemosphere, 2015, 136: 102-110. |
41 | MA Yan, GAO Naiyun, LI Cong. Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate[J]. Environmental Engineering Science, 2012, 29(5): 357-362. |
42 | LIANG Fawen, LIU Zhang, JIANG Xueding, et al. NaOH-modified biochar supported Fe/Mn bimetallic composites as efficient peroxymonosulfate activator for enhance tetracycline removal[J]. Chemical Engineering Journal, 2023, 454: 139949. |
43 | ZHOU Yanbo, ZHANG Yongli, HU Xiaomin. Synergistic coupling Co3Fe7 alloy and CoFe2O4 spinel for highly efficient removal of 2,4-dichlorophenol by activating peroxymonosulfate[J]. Chemosphere, 2020, 242: 125244. |
[1] | 郑锁祺, 詹凌霄, 陈恒, 李志浩, 王禹瑞, 赵宁, 吴昊, 杨林军. 基于混合模型的脱硫废水旁路蒸发系统能耗特性[J]. 化工进展, 2024, 43(6): 2968-2976. |
[2] | 刘京都, 余关龙, 龙志奇, 周璐, 包璞瑞, 滕骏毅, 杜春艳. 纳米球状LaAlO3的制备及其在酸性条件下的除氟性能[J]. 化工进展, 2024, 43(6): 3199-3208. |
[3] | 屈超, 刘俊红, 贾彬, 黄勇. 水性丙烯酸树脂对PBAT/淀粉复合材料性能影响[J]. 化工进展, 2024, 43(6): 3268-3276. |
[4] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[5] | 肖自胜, 李金玲, 陈伊睿, 兰支利, 尹笃林. g-C3N4锚定Cu(Ⅰ)高选择性催化CCl4合成2,4,4,4-四氯丁腈[J]. 化工进展, 2024, 43(6): 3293-3300. |
[6] | 王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373. |
[7] | 朱连燕, 周幸福. 锰掺杂DSA电极及其对印染废水处理的过程优化[J]. 化工进展, 2024, 43(6): 3459-3467. |
[8] | 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展, 2024, 43(5): 2409-2419. |
[9] | 熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922. |
[10] | 丁嘉, 吴文琦, 李鹏程. 两电子水氧化反应抑制掺硼金刚石电极氧化有机物过程中氯酸盐和高氯酸盐的生成[J]. 化工进展, 2024, 43(4): 2183-2190. |
[11] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[12] | 刘雨蓉, 王兴宝, 李文英. 分子筛负载Pt催化剂酸性位点调控及对蒽深度加氢性能的影响[J]. 化工进展, 2024, 43(4): 1832-1839. |
[13] | 董冰岩, 李贞栋, 王佩祥, 涂文娟, 谭艳雯, 张芹. DBD等离子体耦合BiOI催化材料降解苯甲羟肟酸的特性与机制[J]. 化工进展, 2024, 43(3): 1565-1575. |
[14] | 赵瑞强, 周鑫, 牛冰心. 废水处理硝酸盐异化还原与厌氧氨氧化/反硝化耦合工艺构建[J]. 化工进展, 2024, 43(3): 1593-1605. |
[15] | 郭迎春, 梁晓怿. 柠檬酸改性球形活性炭对氨气吸附性能的影响[J]. 化工进展, 2024, 43(2): 1082-1088. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |