化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3459-3467.DOI: 10.16085/j.issn.1000-6613.2023-0860
• 资源与环境化工 • 上一篇
收稿日期:
2023-05-25
修回日期:
2023-09-12
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
周幸福
作者简介:
朱连燕(1976—),女,博士,教授,研究方向为元建模技术及参数优化。E-mail:zlynjust@163.com。
基金资助:
ZHU Lianyan1(), ZHOU Xingfu2(
)
Received:
2023-05-25
Revised:
2023-09-12
Online:
2024-06-15
Published:
2024-07-02
Contact:
ZHOU Xingfu
摘要:
以Ti/SnO2-Sb形稳电极(DSA)为基底,采用浸渍法制备负载有活性层的Ti/SnO2-Sb/SnO2-Sb-Mn电极并进行了表征。利用box-behnken实验设计及响应曲面分析法,探讨槽压、搅拌速率、电极间距这三个因素对亚甲基蓝电催化脱色效率的影响,并建立相应的多元二次回归模型,方差分析结果表明,模型的拟合效果好,影响因素的显著性顺序依次为:槽压>电极间距>搅拌速率。验证实验结果显示,当槽压为4.8V、搅拌速率为320r/min、电极间距为1.5cm时,亚甲基蓝的脱色效果达到最佳,此时脱色率达到99.3%,模型的预测值非常接近实验值,验证了该方法的可行性和有效性,可为电催化脱色处理印染废水提供一定的技术指导。
中图分类号:
朱连燕, 周幸福. 锰掺杂DSA电极及其对印染废水处理的过程优化[J]. 化工进展, 2024, 43(6): 3459-3467.
ZHU Lianyan, ZHOU Xingfu. Mn-doped DSA electrode and optimized application in wastewater treatment process[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3459-3467.
水平编码(x) | 槽压 (X1)/V | 搅拌速率 (X2)/r·min-1 | 电极间距 (X3)/cm |
---|---|---|---|
-1 | 3 | 0 | 1 |
1 | 4 | 500 | 1.5 |
0 | 5 | 1000 | 3 |
表1 实验各因素编码及水平
水平编码(x) | 槽压 (X1)/V | 搅拌速率 (X2)/r·min-1 | 电极间距 (X3)/cm |
---|---|---|---|
-1 | 3 | 0 | 1 |
1 | 4 | 500 | 1.5 |
0 | 5 | 1000 | 3 |
序号 | X1 | X2 | X3 | 脱色率(Y)/% | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
1 | 3 | 0 | 2 | 43.4 | 42.74 |
2 | 5 | 0 | 2 | 96.2 | 94.88 |
3 | 3 | 1000 | 2 | 47.3 | 48.61 |
4 | 5 | 1000 | 2 | 71.3 | 71.96 |
5 | 3 | 500 | 1 | 73.7 | 75.64 |
6 | 5 | 500 | 1 | 98 | 100.58 |
7 | 3 | 500 | 3 | 43 | 40.41 |
8 | 5 | 500 | 3 | 92.9 | 90.96 |
9 | 4 | 0 | 1 | 76.2 | 74.93 |
10 | 4 | 1000 | 1 | 77 | 73.75 |
11 | 4 | 0 | 3 | 56.6 | 59.85 |
12 | 4 | 1000 | 3 | 42.7 | 43.98 |
13 | 4 | 500 | 2 | 81.9 | 83.32 |
14 | 4 | 500 | 2 | 81.7 | 83.32 |
15 | 4 | 500 | 2 | 84 | 83.32 |
16 | 4 | 500 | 2 | 85.6 | 83.32 |
17 | 4 | 500 | 2 | 83.4 | 83.32 |
表2 实验设计与结果
序号 | X1 | X2 | X3 | 脱色率(Y)/% | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
1 | 3 | 0 | 2 | 43.4 | 42.74 |
2 | 5 | 0 | 2 | 96.2 | 94.88 |
3 | 3 | 1000 | 2 | 47.3 | 48.61 |
4 | 5 | 1000 | 2 | 71.3 | 71.96 |
5 | 3 | 500 | 1 | 73.7 | 75.64 |
6 | 5 | 500 | 1 | 98 | 100.58 |
7 | 3 | 500 | 3 | 43 | 40.41 |
8 | 5 | 500 | 3 | 92.9 | 90.96 |
9 | 4 | 0 | 1 | 76.2 | 74.93 |
10 | 4 | 1000 | 1 | 77 | 73.75 |
11 | 4 | 0 | 3 | 56.6 | 59.85 |
12 | 4 | 1000 | 3 | 42.7 | 43.98 |
13 | 4 | 500 | 2 | 81.9 | 83.32 |
14 | 4 | 500 | 2 | 81.7 | 83.32 |
15 | 4 | 500 | 2 | 84 | 83.32 |
16 | 4 | 500 | 2 | 85.6 | 83.32 |
17 | 4 | 500 | 2 | 83.4 | 83.32 |
方差来源 | 平方和 | 自由度 | 均方 | F | P |
---|---|---|---|---|---|
模型 | 5693.3 | 9 | 632.6 | 73.9 | <0.0001 |
X1 | 2850.1 | 1 | 2850.1 | 333 | <0.0001 |
X2 | 145.5 | 1 | 145.3 | 16.9 | 0.0045 |
X3 | 1005.7 | 1 | 1005.8 | 117.5 | <0.0001 |
X1X2 | 207.3 | 1 | 207.4 | 24.2 | 0.0017 |
X1X3 | 163.8 | 1 | 163.8 | 19.1 | 0.0033 |
X2X3 | 54 | 1 | 54 | 6.3 | 0.0403 |
X12 | 26.3 | 1 | 26.3 | 3.1 | 0.1233 |
X22 | 1114.9 | 1 | 1114.9 | 130.3 | <0.0001 |
X32 | 64.8 | 1 | 64.78 | 7.57 | 0.0284 |
残差 | 59.91 | 7 | 8.56 | — | — |
失拟项 | 49.6 | 3 | 16.53 | 6.42 | 0.0522 |
误差 | 10.31 | 4 | 2.58 | — | — |
总和 | 5753.2 | 16 | — | — | — |
表3 方差分析和显著性检验表
方差来源 | 平方和 | 自由度 | 均方 | F | P |
---|---|---|---|---|---|
模型 | 5693.3 | 9 | 632.6 | 73.9 | <0.0001 |
X1 | 2850.1 | 1 | 2850.1 | 333 | <0.0001 |
X2 | 145.5 | 1 | 145.3 | 16.9 | 0.0045 |
X3 | 1005.7 | 1 | 1005.8 | 117.5 | <0.0001 |
X1X2 | 207.3 | 1 | 207.4 | 24.2 | 0.0017 |
X1X3 | 163.8 | 1 | 163.8 | 19.1 | 0.0033 |
X2X3 | 54 | 1 | 54 | 6.3 | 0.0403 |
X12 | 26.3 | 1 | 26.3 | 3.1 | 0.1233 |
X22 | 1114.9 | 1 | 1114.9 | 130.3 | <0.0001 |
X32 | 64.8 | 1 | 64.78 | 7.57 | 0.0284 |
残差 | 59.91 | 7 | 8.56 | — | — |
失拟项 | 49.6 | 3 | 16.53 | 6.42 | 0.0522 |
误差 | 10.31 | 4 | 2.58 | — | — |
总和 | 5753.2 | 16 | — | — | — |
1 | BOCZKAJ Grzegorz, FERNANDES André. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review [J]. Chemical Engineering Journal, 2017, 320: 608-633. |
2 | TURAN Nouha Bakaraki, ERKAN Hanife Sari, ILHAN Fatih, et al. Decolorization of textile wastewater by electrooxidation process using different anode materials: Statistical optimization[J]. Water Environment Research, 2022, 94(1): e1683. |
3 | LI Ruixiang, LI Tian, WAN Yuxuan, et al. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems[J]. Journal of Hazardous Materials, 2022, 421: 126740. |
4 | AGARWAL Prashant, GUPTA Ritika, AGARWAL Neeraj. Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment[J]. Journal of Nanotechnology, 2019, 2019: 1-9. |
5 | SAHU O, MAZUMDAR B, CHAUDHARI P K. Electrochemical treatment of sugar industry wastewater: Process optimization by response surface methodology[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1527-1540. |
6 | CARDOSO Juliano Carvalho, BESSEGATO Guilherme Garcia, BOLDRIN ZANONI Maria Valnice. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization[J]. Water Research, 2016, 98: 39-46. |
7 | PELEYEJU M G, UMUKORO E H, BABALOLA J O, et al. Electrochemical degradation of an anthraquinonic dye on an expanded graphite-diamond composite electrode[J]. Electrocatalysis, 2016, 7(2): 132-139. |
8 | Sergi GARCIA-SEGURA, BRILLAS Enric. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35. |
9 | 郑顺丽, 李澄, 项腾飞, 等. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10): 71-78. |
ZHENG Shunli, LI Cheng, XIANG Tengfei, et al. Fabrication of Aluminum-based superhydrophobic coating by anodization and research on stability and corrosion resistance[J]. Journal of Materials Engineering, 2017, 45(10): 71-78. | |
10 | 王立璇, 马宏瑞, 孟高飞, 等. DSA电极催化氧化法处理制药废水的应用研究[J]. 工业水处理, 2017, 37(7): 35-38. |
WANG Lixuan, MA Hongrui, MENG Gaofei, et al. Study on the application of catalytic-oxidation process with DSA electrode to the treatment of pharmaceutical wastewater[J]. Industrial Water Treatment, 2017, 37(7): 35-38. | |
11 | ZHUO Qiongfang, LI Xing, YAN Feng, et al. Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid(6∶2 FTS) on DSA electrode:Operating parameters and mechanism[J]. Journal of Environmental Sciences, 2014, 26(8): 1733-1739. |
12 | 徐浩, 张倩, 邵丹, 等. 钛基体锑掺杂二氧化锡电极的制备与改性研究进展[J]. 化工进展, 2013, 32(S1): 145-151. |
XU Hao, ZHANG Qian, SHAO Dan, et al. Advance in the preparation and modification of titanium-based Sb-doped SnO2 electrodes[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 145-151. | |
13 | 石凤浜, 陈步明, 郭忠诚, 等. Mn掺杂不锈钢基β-PbO2电极制备及电催化性能[J]. 复旦学报(自然科学版), 2012, 51(2): 213-217. |
SHI Fengbang, CHEN Buming, GUO Zhongcheng, et al. Effect of Mn2+-doping on preparation and electrocatalytic activity of β-PbO2 on stainless electrodes[J]. Journal of Fudan University (Natural Science), 2012, 51(2): 213-217. | |
14 | XU Li, WANG Ye, XU Qiutong. Comparison of the properties of low-dimensional nano-Ti/SnO2-Sb-Fe electrodes prepared by different methods[J]. Journal of the Electrochemical Society, 2019, 166(4): E69-E76. |
15 | JARDAK Karama, DIRANY Ahmad, DROGUI Patrick, et al. Statistical optimization of electrochemical oxidation of ethylene glycol using response surface methodology[J]. Process Safety and Environmental Protection, 2017, 105: 12-20. |
16 | Guitaya Léa, Azaïs Antonin, Zaviska Francois, et al. Electrochemical oxidation as treatment for contaminated wastewaters by carbamazepine: Process optimization through response surface methodology[J]. Water, Air, & Soil Pollution, 2017, 228(10): 384. |
17 | 李鹏芳, 刘邦海, 张科亭, 等. 响应曲面法优化电化学氧化处理染料废水工艺参数的研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(S1): 162-171. |
LI Pengfang, LIU Banghai, ZHANG Keting, et al. Process parameter optimization of electrochemical oxidation of dye wastewater by response surface methodology[J]. Periodical of Ocean University of China, 2018, 48(S1): 162-171. | |
18 | HIWARKAR Ajay Devidas, SINGH Seema, SRIVASTAVA Vimal Chandra, et al. Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: Multi-response optimization and degradation mechanism[J]. Journal of Environmental Management, 2017, 198: 144-152. |
19 | 仉洁, 王旭东, 杨逸飞, 等. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
ZHANG Jie, WANG Xudong, YANG Yifei, et al. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. | |
20 | 王栗, 岳琳, 王开红, 等. 响应曲面法优化电化学氧化技术处理染料废水[J]. 环境工程学报, 2014, 8(3): 990-996. |
WANG Li, YUE Lin, WANG Kaihong, et al. Optimization of electrochemical oxidation of dye wastewater using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014,8(3): 990-996. | |
21 | 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化脱色染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342. |
ZHU Lianyan, WANG Yuming, ZHOU Xingfu. Application of response surface methodology in optimizing electrocatalytic degradation of dye wastewater[J]. CIESC Journal, 2020, 71(3): 1335-1342. | |
22 | 乔仙蓉. 紫外可见光谱分析海娜粉中的指甲花醌[J]. 日用化学工业, 2016, 46(3): 178-182. |
QIAO Xianrong. UV-Vis spectral analysis of lawsone in henna powder[J]. China Surfactant Detergent & Cosmetics, 2016, 46(3): 178-182. | |
23 | 李云雁, 胡传荣. 实验设计与数据处理[M]. 2版. 北京: 化学工业出版社, 2008. |
LI Yunyan, HU Chuanrong. Experiment design and data processing[M]. 2nd ed. Beijing: Chemical Industry Press, 2008. | |
24 | Montgomery D C. Design and analysis of experiments[M]. 8th ed. New York: John Wiley & Sons, 2013. |
25 | 王春雨, 朱玲, 许丹芸, 等.低温等离子体脱色苯的工艺参数优化[J].化工进展, 2020, 39 (1): 402-412. |
WANG Chunyu, ZHU Ling, XU Danyun, et al. Process parameters optimization for degradation of benzene by non-thermal plasma[J]. Chemical Industry and Engineering Progress, 2020, 39 (1): 402-412. | |
26 | 史公初, 廖亚龙, 苏博文, 等. 响应曲面法多目标优化铜冶炼渣氧压选择性浸出工艺[J]. 化工进展, 2020, 39 (S1): 270-280. |
SHI Gongchu, LIAO Yalong, SU Bowen, et al. Multi-objective optimization of pressure oxidative selective leaching of copper smelting slag by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39 (S1): 270-280. | |
27 | 唐丽蓉, 欧文, 林雯怡, 等. 酸水解制备纳米纤维素工艺条件的响应面优化[J]. 林产化学与工业, 2011, 31(6): 61-65. |
TANG Lirong, Wen OU, LIN Wenyi, et al. Optimization of acid hydrolysis processing of nanocellulose crystal using response surface methodology[J]. Chemistry and Industry of Forest Products, 2011, 31(6): 61-65. | |
28 | 刘子菲, 路苹, 高子乔, 等. 水解制备细菌纤维素纳米纤维及纳米纤维稳定的Pickering乳液特性[J]. 食品与发酵工业, 2019, 45(22): 76-82. |
LIU Zifei, LU Ping, GAO Ziqiao, et al. Hydrolysis preparation of bacterial cellulose nanofibers and its characteristics of the Pickering emulsions[J]. Food and Fermentation Industries, 2019, 45(22): 76-82. |
[1] | 田芳, 郭光, 丁克强, 杨凤, 刘翀, 王慧雅. 降解偶氮染料嗜盐菌的分离、降解特性及机制[J]. 化工进展, 2023, 42(4): 2115-2121. |
[2] | 范娇, 谢学辉, 秦艳, 陈小光, 方英荣, 杨珊珊, 赵江贵, 莫浩楠, 郑航蜜, 刘娜, 张庆云, 宋新山. 功能菌群DDMZ1共代谢脱色降解不同结构染料差异效应[J]. 化工进展, 2022, 41(8): 4449-4463. |
[3] | 翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626. |
[4] | 陈思, 胡腾飞, 于永波, 王冰鑫, 洪俊明, 张倩. 硫掺杂石墨烯电催化降解有机染料甲基橙[J]. 化工进展, 2021, 40(1): 550-558. |
[5] | 宗莉, 唐洁, 牟斌, 王爱勤. 凹凸棒石/炭复合吸附材料研究进展[J]. 化工进展, 2021, 40(1): 282-296. |
[6] | 张华, 张子鹏, 张澜澜, 张晓飞, 刘译阳. H2O2强化光催化处理苯胺化工废水的应用试验[J]. 化工进展, 2020, 39(12): 5299-5308. |
[7] | 王元芳, 尹孟华, 钱佳丽, 耿启金, 杨金美, 陈刚. 混凝与光催化联用处理水体中的复合染料[J]. 化工进展, 2020, 39(12): 5290-5298. |
[8] | 赵媛媛,刘文静,董培,张亮,杨政伟,赵朝成. 聚苯胺中间层改性Ti/PbO2电极的制备及其降解性能[J]. 化工进展, 2019, 38(12): 5478-5486. |
[9] | 王冰鑫,于永波,黄湾,洪俊明,张倩. 硫掺杂石墨烯电催化降解偶氮染料RBK5[J]. 化工进展, 2019, 38(12): 5471-5477. |
[10] | 郭睿, 张瑶, 高弯弯, 韩双, 王宁. 高岭土负载HPCS-MA对亚甲基蓝废水的絮凝性能[J]. 化工进展, 2019, 38(04): 1953-1960. |
[11] | 李梦娟, 李艳艳, 鲁静, 李晓强. 聚酯醇解废液的脱色动力学[J]. 化工进展, 2018, 37(09): 3666-3674. |
[12] | 张庆云, 谢学辉, 柳建设. 微生物共代谢处理印染废水研究进展[J]. 化工进展, 2017, 36(09): 3492-3501. |
[13] | 罗力, 吕涯. 再生润滑油最优脱色效果离子液体的选择[J]. 化工进展, 2017, 36(06): 2115-2122. |
[14] | 姚培, 李树白, 刘媛, 张启蒙, 季从兰, 聂华丽. HTMAC/KH550/膨润土吸附剂的制备、表征及其在甲基橙废水的吸附行为[J]. 化工进展, 2017, 36(04): 1374-1380. |
[15] | 俞承志, 谢学辉, 郑秀林, 徐乐铱, 李然, 柳建设. 活性黑5的生物脱色、复色现象及机理[J]. 化工进展, 2016, 35(09): 2987-2996. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |