1 |
BOCZKAJ Grzegorz, FERNANDES André. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review [J]. Chemical Engineering Journal, 2017, 320: 608-633.
|
2 |
TURAN Nouha Bakaraki, ERKAN Hanife Sari, ILHAN Fatih, et al. Decolorization of textile wastewater by electrooxidation process using different anode materials: Statistical optimization[J]. Water Environment Research, 2022, 94(1): e1683.
|
3 |
LI Ruixiang, LI Tian, WAN Yuxuan, et al. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems[J]. Journal of Hazardous Materials, 2022, 421: 126740.
|
4 |
AGARWAL Prashant, GUPTA Ritika, AGARWAL Neeraj. Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment[J]. Journal of Nanotechnology, 2019, 2019: 1-9.
|
5 |
SAHU O, MAZUMDAR B, CHAUDHARI P K. Electrochemical treatment of sugar industry wastewater: Process optimization by response surface methodology[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1527-1540.
|
6 |
CARDOSO Juliano Carvalho, BESSEGATO Guilherme Garcia, BOLDRIN ZANONI Maria Valnice. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization[J]. Water Research, 2016, 98: 39-46.
|
7 |
PELEYEJU M G, UMUKORO E H, BABALOLA J O, et al. Electrochemical degradation of an anthraquinonic dye on an expanded graphite-diamond composite electrode[J]. Electrocatalysis, 2016, 7(2): 132-139.
|
8 |
Sergi GARCIA-SEGURA, BRILLAS Enric. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35.
|
9 |
郑顺丽, 李澄, 项腾飞, 等. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10): 71-78.
|
|
ZHENG Shunli, LI Cheng, XIANG Tengfei, et al. Fabrication of Aluminum-based superhydrophobic coating by anodization and research on stability and corrosion resistance[J]. Journal of Materials Engineering, 2017, 45(10): 71-78.
|
10 |
王立璇, 马宏瑞, 孟高飞, 等. DSA电极催化氧化法处理制药废水的应用研究[J]. 工业水处理, 2017, 37(7): 35-38.
|
|
WANG Lixuan, MA Hongrui, MENG Gaofei, et al. Study on the application of catalytic-oxidation process with DSA electrode to the treatment of pharmaceutical wastewater[J]. Industrial Water Treatment, 2017, 37(7): 35-38.
|
11 |
ZHUO Qiongfang, LI Xing, YAN Feng, et al. Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid(6∶2 FTS) on DSA electrode:Operating parameters and mechanism[J]. Journal of Environmental Sciences, 2014, 26(8): 1733-1739.
|
12 |
徐浩, 张倩, 邵丹, 等. 钛基体锑掺杂二氧化锡电极的制备与改性研究进展[J]. 化工进展, 2013, 32(S1): 145-151.
|
|
XU Hao, ZHANG Qian, SHAO Dan, et al. Advance in the preparation and modification of titanium-based Sb-doped SnO2 electrodes[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 145-151.
|
13 |
石凤浜, 陈步明, 郭忠诚, 等. Mn掺杂不锈钢基β-PbO2电极制备及电催化性能[J]. 复旦学报(自然科学版), 2012, 51(2): 213-217.
|
|
SHI Fengbang, CHEN Buming, GUO Zhongcheng, et al. Effect of Mn2+-doping on preparation and electrocatalytic activity of β-PbO2 on stainless electrodes[J]. Journal of Fudan University (Natural Science), 2012, 51(2): 213-217.
|
14 |
XU Li, WANG Ye, XU Qiutong. Comparison of the properties of low-dimensional nano-Ti/SnO2-Sb-Fe electrodes prepared by different methods[J]. Journal of the Electrochemical Society, 2019, 166(4): E69-E76.
|
15 |
JARDAK Karama, DIRANY Ahmad, DROGUI Patrick, et al. Statistical optimization of electrochemical oxidation of ethylene glycol using response surface methodology[J]. Process Safety and Environmental Protection, 2017, 105: 12-20.
|
16 |
Guitaya Léa, Azaïs Antonin, Zaviska Francois, et al. Electrochemical oxidation as treatment for contaminated wastewaters by carbamazepine: Process optimization through response surface methodology[J]. Water, Air, & Soil Pollution, 2017, 228(10): 384.
|
17 |
李鹏芳, 刘邦海, 张科亭, 等. 响应曲面法优化电化学氧化处理染料废水工艺参数的研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(S1): 162-171.
|
|
LI Pengfang, LIU Banghai, ZHANG Keting, et al. Process parameter optimization of electrochemical oxidation of dye wastewater by response surface methodology[J]. Periodical of Ocean University of China, 2018, 48(S1): 162-171.
|
18 |
HIWARKAR Ajay Devidas, SINGH Seema, SRIVASTAVA Vimal Chandra, et al. Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: Multi-response optimization and degradation mechanism[J]. Journal of Environmental Management, 2017, 198: 144-152.
|
19 |
仉洁, 王旭东, 杨逸飞, 等. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372.
|
|
ZHANG Jie, WANG Xudong, YANG Yifei, et al. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372.
|
20 |
王栗, 岳琳, 王开红, 等. 响应曲面法优化电化学氧化技术处理染料废水[J]. 环境工程学报, 2014, 8(3): 990-996.
|
|
WANG Li, YUE Lin, WANG Kaihong, et al. Optimization of electrochemical oxidation of dye wastewater using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014,8(3): 990-996.
|
21 |
朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化脱色染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
|
|
ZHU Lianyan, WANG Yuming, ZHOU Xingfu. Application of response surface methodology in optimizing electrocatalytic degradation of dye wastewater[J]. CIESC Journal, 2020, 71(3): 1335-1342.
|
22 |
乔仙蓉. 紫外可见光谱分析海娜粉中的指甲花醌[J]. 日用化学工业, 2016, 46(3): 178-182.
|
|
QIAO Xianrong. UV-Vis spectral analysis of lawsone in henna powder[J]. China Surfactant Detergent & Cosmetics, 2016, 46(3): 178-182.
|
23 |
李云雁, 胡传荣. 实验设计与数据处理[M]. 2版. 北京: 化学工业出版社, 2008.
|
|
LI Yunyan, HU Chuanrong. Experiment design and data processing[M]. 2nd ed. Beijing: Chemical Industry Press, 2008.
|
24 |
Montgomery D C. Design and analysis of experiments[M]. 8th ed. New York: John Wiley & Sons, 2013.
|
25 |
王春雨, 朱玲, 许丹芸, 等.低温等离子体脱色苯的工艺参数优化[J].化工进展, 2020, 39 (1): 402-412.
|
|
WANG Chunyu, ZHU Ling, XU Danyun, et al. Process parameters optimization for degradation of benzene by non-thermal plasma[J]. Chemical Industry and Engineering Progress, 2020, 39 (1): 402-412.
|
26 |
史公初, 廖亚龙, 苏博文, 等. 响应曲面法多目标优化铜冶炼渣氧压选择性浸出工艺[J]. 化工进展, 2020, 39 (S1): 270-280.
|
|
SHI Gongchu, LIAO Yalong, SU Bowen, et al. Multi-objective optimization of pressure oxidative selective leaching of copper smelting slag by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39 (S1): 270-280.
|
27 |
唐丽蓉, 欧文, 林雯怡, 等. 酸水解制备纳米纤维素工艺条件的响应面优化[J]. 林产化学与工业, 2011, 31(6): 61-65.
|
|
TANG Lirong, Wen OU, LIN Wenyi, et al. Optimization of acid hydrolysis processing of nanocellulose crystal using response surface methodology[J]. Chemistry and Industry of Forest Products, 2011, 31(6): 61-65.
|
28 |
刘子菲, 路苹, 高子乔, 等. 水解制备细菌纤维素纳米纤维及纳米纤维稳定的Pickering乳液特性[J]. 食品与发酵工业, 2019, 45(22): 76-82.
|
|
LIU Zifei, LU Ping, GAO Ziqiao, et al. Hydrolysis preparation of bacterial cellulose nanofibers and its characteristics of the Pickering emulsions[J]. Food and Fermentation Industries, 2019, 45(22): 76-82.
|