化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2673-2683.DOI: 10.16085/j.issn.1000-6613.2023-2063
• 催化与材料技术 • 上一篇
刘思宇1(), 杨卷1(), 陈培1, 陈祖田1, 闫斌1, 刘育红1, 邱介山2()
收稿日期:
2023-11-28
修回日期:
2024-03-12
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
杨卷,邱介山
作者简介:
刘思宇(1996—),男,博士研究生,研究方向为碳基水系锌离子储能。E-mail:liu-siyu@stu.xjtu.edu.cn。
基金资助:
LIU Siyu1(), YANG Juan1(), CHEN Pei1, CHEN Zutian1, YAN Bin1, LIU Yuhong1, QIU Jieshan2()
Received:
2023-11-28
Revised:
2024-03-12
Online:
2024-05-15
Published:
2024-06-15
Contact:
YANG Juan, QIU Jieshan
摘要:
基于多孔碳正极和锌金属负极构建的水性锌离子电容器(ZICs)具有成本低、环境友好、安全性高和长期耐用等优点,近年来受到广泛关注。本文以具有共价有机框架结构(COF)的富氮聚合物为碳源前体,通过简单的炭化自活化策略,合成了富氮多孔碳纳米片(NPCN-x)。研究表明,基于聚合物前体丰富的COF结构特点,炭化温度对所制备碳材料的氮含量和氮掺杂构型有显著影响,且碳材料表面的吡咯氮含量与其储锌性能呈现高度线性相关。优化后的NPCN-800其吡咯氮原子分数高达2.15%,作为ZICs的正极材料,在0.5A/g的电流密度下,展现出158mAh/g的高比容量和优异的循环稳定性。结合密度泛函理论计算发现,碳材料表面的吡咯氮构型具有优异的电化学活性,能够显著增强Zn离子的化学吸脱附过程。该研究为高性能ZICs用碳基电极材料的设计构建提供了新思路。
中图分类号:
刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683.
LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683.
样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
---|---|---|---|---|---|---|---|
吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
NPCN-700 | 15.32 | 4.45 | 1.34 | 9.53 | 29.1 | 8.7 | 62.2 |
NPCN-800 | 11.38 | 2.47 | 2.15 | 6.76 | 21.7 | 18.9 | 59.4 |
NPCN-900 | 7.91 | 1.25 | 1.54 | 5.12 | 15.7 | 19.5 | 64.8 |
表1 基于XPS分峰拟合的NPCN-x中不同氮构型的比例及其含量
样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
---|---|---|---|---|---|---|---|
吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
NPCN-700 | 15.32 | 4.45 | 1.34 | 9.53 | 29.1 | 8.7 | 62.2 |
NPCN-800 | 11.38 | 2.47 | 2.15 | 6.76 | 21.7 | 18.9 | 59.4 |
NPCN-900 | 7.91 | 1.25 | 1.54 | 5.12 | 15.7 | 19.5 | 64.8 |
1 | KITTNER Noah, LILL Felix, KAMMEN Daniel M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2(9): 17125. |
2 | ZHAO Yun, SETZLER Brian P, WANG Junhua, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
3 | 王满, 车晓刚, 刘思宇, 等. 锌离子电容器用碳基正极材料的研究进展[J]. 新型炭材料, 2021, 36(1): 155-166. |
WANG Man, CHE Xiaogang, LIU Siyu, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials, 2021, 36(1): 155-166. | |
4 | WANG Yanyan, SUN Shirong, WU Xiaoliang, et al. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators[J]. Nano-Micro Letters, 2023, 15(1): 78. |
5 | LI Zhiwei, AN Yufeng, DONG Shengyang, et al. Progress on zinc ion hybrid supercapacitors: Insights and challenges[J]. Energy Storage Materials, 2020, 31: 252-266. |
6 | TANG Heng, YAO Junjun, ZHU Yirong. Recent developments and future prospects for zinc-ion hybrid capacitors: A review[J]. Advanced Energy Materials, 2021, 11(14): 2003994.1-2003994.23. |
7 | WANG Haiyan, YE Wuquan, YANG Ying, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021, 85: 105942. |
8 | CHEN Shengmei, MA Longtao, ZHANG Kui, et al. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres[J]. Journal of Materials Chemistry A, 2019, 7(13): 7784-7790. |
9 | DONG Liubing, MA Xinpei, LI Yang, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2018, 13: 96-102. |
10 | WU Mengcheng, HU Xi, ZHENG Wanying, et al. Recent advances in porous carbon nanosheets for high-performance metal-ion capacitors[J]. Chemical Engineering Journal, 2023, 466: 143077. |
11 | DU Wencheng, Edison Huixiang ANG, YANG Yang, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2020, 13(10): 3330-3360. |
12 | HAO Long, LI Xianglong, ZHI Linjie. Carbonaceous electrode materials for supercapacitors[J]. Advanced Materials, 2013, 25(28): 3899-3904. |
13 | XIAO Jing, HAN Junwei, ZHANG Chen, et al. Dimensionality, function and performance of carbon materials in energy storage devices[J]. Advanced Energy Materials, 2022, 12(4): 2100775. |
14 | KUMAR Sachin, SAEED Ghuzanfar, ZHU Ling, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review[J]. Chemical Engineering Journal, 2021, 403: 126352. |
15 | DENG Xiaoyang, LI Jiajun, SHAN Zhu, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A, 2020, 8(23): 11617-11625. |
16 | YIN Jian, ZHANG Wenli, WANG Wenxi, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials, 2020, 10(37): 2001705. |
17 | ZHAO Lei, JIAN Wenbin, ZHANG Xiaoshan, et al. Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors[J]. Journal of Energy Storage, 2022, 53: 105095. |
18 | LI Jie, ZHANG Jihua, YU Lai, et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors[J]. Energy Storage Materials, 2021, 42: 705-714. |
19 | WU Dandan, JI Chenchen, MI Hongyu, et al. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors[J]. Nanoscale, 2021, 13(37): 15869-15881. |
20 | GHOSH Subrata, BARG Suelen, JEONG Sang Mun, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239. |
21 | ZHANG Haozhe, LIU Qiyu, FANG Yuanbin, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials, 2019, 31(44): 1904948. |
22 | HAN Weiwei, LIU Guicheng, SEO Woncheol, et al. Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage[J]. Carbon, 2021, 184: 534-543. |
23 | ZHU Xiaoqing, GUO Fengjiao, YANG Qi, et al. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework[J]. Journal of Power Sources, 2021, 506: 230224. |
24 | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. |
25 | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
26 | PERDEW John P, BURKE Kieron, ERNZERHOF Matthias. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
27 | GRIMME Stefan, ANTONY Jens, EHRLICH Stephan, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
28 | ZHANG Wen, NOWLAN Daniel T, THOMSON Lisa M, et al. Orthogonal, convergent syntheses of dendrimers based on melamine with one or two unique surface sites for manipulation[J]. Journal of the American Chemical Society, 2001, 123(37): 8914-8922. |
29 | QIU Xuan, XU Jie, ZHOU Kang, et al. Molecular tailoring of p-type organics for zinc batteries with high energy density[J]. Angewandte Chemie (International Ed in English), 2023, 62(30): e202304036. |
30 | XU Yunpeng, CAI Pingwei, CHEN Kai, et al. Hybrid acid/alkali all covalent organic frameworks battery[J]. Angewandte Chemie (International Ed in English), 2023, 62(18): e202215584. |
31 | SHI Yanjun, WANG Pengcheng, GAO Haiguang, et al. π-Conjugated N-heterocyclic compound with redox-active quinone and pyrazine moieties as a high-capacity organic cathode for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2023, 461: 141850. |
32 | YANG Jin, HUA Haiming, YANG Huiya, et al. A high utilization and environmentally sustainable all-organic aqueous zinc-ion battery enabled by a molecular architecture design[J]. Advanced Energy Materials, 2023, 13(25): 2204005. |
33 | CHEN Yuan, DAI Huichao, FAN Kun, et al. A recyclable and scalable high-capacity organic battery[J]. Angewandte Chemie (International Ed in English), 2023, 62(27): e202302539. |
34 | SEKHON Satpal Singh, PARK Jin-Soo. Biomass-derived N-doped porous carbon nanosheets for energy technologies[J]. Chemical Engineering Journal, 2021, 425: 129017. |
35 | LU Yanyan, LI Zhiwei, BAI Zhengyu, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy, 2019, 66: 104132. |
36 | LIU Jinlong, ZHANG Yaqian, ZHANG Lei, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31(24): 1901261. |
37 | MA Cheng, CHEN Xueyong, LONG Donghui, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon, 2017, 118: 699-708. |
38 | ELGENDY Amr, BASIONY N M EL, EL-TAIB HEAKAL F, et al. Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode activematerial for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 466: 228294. |
39 | CHEN Xiangnan, ZHANG Yan, TAO Lei, et al. Ferromagnetic carbonized polyaniline/nanodiamond hybrids for ultrabroad-band electromagnetic absorption[J]. Carbon, 2020, 164: 224-234. |
40 | LIU Mengmeng, ZHU Xiaohang, SONG Yujie, et al. Bifunctional edge-rich nitrogen doped porous carbon for activating oxygen and sulfur[J]. Advanced Functional Materials, 2023, 33(11): 2213395. |
41 | ZHAO Fengjia, ZHU Yun, CHEN Ying, et al. Acidified nitrogen self-doped porous carbon with superprotonic conduction for applications in solid-state proton battery[J]. Small, 2024, 20(8): e2305765. |
42 | CHE Xiaogang, YANG Juan, LIU Siyu, et al. Multilayer-dense porous carbon nanosheets with high volumetric capacitance for supercapacitors[J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8908-8917. |
43 | WANG Yingshu, YANG Juan, LIU Siyu, et al. 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage[J]. Carbon, 2023, 201: 624-632. |
44 | LIU Siyu, YANG Juan, WANG Man, et al. Encapsulation of redox p-benzoquinone into microporous carbon frameworks by a diamine covalent-grafted strategy for aqueous hybrid supercapacitors[J]. ACS Applied Energy Materials, 2023, 6(5): 2989-2998. |
45 | WANG Man, YANG Juan, LIU Siyu, et al. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 560: 69-76. |
46 | LIU Siyu, JIA Kaili, YANG Juan, et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage[J]. Chemical Engineering Journal, 2023, 475: 146181. |
47 | SHANG Kezheng, LIU Yangjie, CAI Pingwei, et al. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2022, 10(12): 6489-6498. |
48 | FEI Rixin, WANG Huanwen, WANG Qiang, et al. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials, 2020, 10(47): 2002741. |
49 | SUN Tianjiang, ZHANG Weijia, NIAN Qingshun, et al. Molecular engineering design for high-performance aqueous zinc-organic battery[J]. Nano-Micro Letters, 2023, 15(1): 36. |
50 | WANG Man, YANG Juan, LIU Siyu, et al. Nitrogen-doped porous carbon electrode for aqueous iodide redox supercapacitor[J]. Chemical Engineering Journal, 2023, 451: 138501. |
[1] | 周安宁, 江雨寒, 刘墨宣, 赵伟, 李振. 电解煤浆制氢过程中煤阶及矿物的影响与煤结构演化研究进展[J]. 化工进展, 2024, 43(5): 2294-2310. |
[2] | 李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575. |
[3] | 方峣, 刘雷, 高志华, 黄伟, 左志军. 光辅助直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2024, 43(5): 2611-2628. |
[4] | 丁嘉, 吴文琦, 李鹏程. 两电子水氧化反应抑制掺硼金刚石电极氧化有机物过程中氯酸盐和高氯酸盐的生成[J]. 化工进展, 2024, 43(4): 2183-2190. |
[5] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
[6] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[7] | 吴剑扬, 申兰耀, 于永利, 王汝娜, 蒋宁, 杨新河, 邱景义, 周恒辉. 锂离子电池高镍正极材料的制备及性能优化[J]. 化工进展, 2024, 43(3): 1387-1394. |
[8] | 娄瑞, 牛涛嫄, 曹启航, 张依依, 雷雯祺, 卢聪敏, 王志伟. δ-MnO2原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021. |
[9] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[10] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
[11] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[12] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[13] | 于松民, 金洪波, 杨明虎, 余海峰, 江浩. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2024, 43(1): 302-309. |
[14] | 夏银萍, 李洲鹏, 汪倩倩. 高载量锂硫电池正极设计优化[J]. 化工进展, 2024, 43(1): 364-375. |
[15] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |