化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1524-1534.DOI: 10.16085/j.issn.1000-6613.2023-0419
• 资源与环境化工 • 上一篇
楚振普1(), 陈禹蒙2,3(), 李俊国3, 孙庆轩2, 刘科1,3,4()
收稿日期:
2023-03-20
修回日期:
2023-05-30
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
陈禹蒙,刘科
作者简介:
楚振普(1999—),男,硕士研究生,研究方向为废旧锂离子电池资源化回收。E-mail:12232778@mail.sustech.edu.cn。
基金资助:
CHU Zhenpu1(), CHEN Yumeng2,3(), LI Junguo3, SUN Qingxuan2, LIU Ke1,3,4()
Received:
2023-03-20
Revised:
2023-05-30
Online:
2024-03-10
Published:
2024-04-11
Contact:
CHEN Yumeng, LIU Ke
摘要:
锂离子电池使用6~8年后,其容量会出现一定程度的衰减,从而产生大量废弃物。负极石墨在电池中质量分数占比为12%~21%,对其回收利用有利于保护环境和发展经济。针对废旧锂离子电池负极石墨再生为电池级石墨的方法展开综述,主要介绍了浸出煅烧组合、石墨表面涂覆、制备复合材料和杂原子掺杂的方法,并在能耗、电化学性能等方面做了简要比较。目前,在众多再循环方向中,将废旧石墨再生为电池级石墨是最合适的路径,而且能从根源上解决负极材料的再生问题。在此基础上,未来应开发更加高效环保的浸出剂,寻求多路径的低温煅烧方法,尝试其他高容量负极材料与废旧石墨复合或者石墨表面的低成本涂层,加强杂原子在石墨中掺杂机理的研究。
中图分类号:
楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534.
CHU Zhenpu, CHEN Yumeng, LI Junguo, SUN Qingxuan, LIU Ke. Review on recycling of graphite anode from spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1524-1534.
工艺 | 容量 /mAh·g-1 | 首次充电比容量 /mAh·g-1 | 首次库仑效率 /% | 容量保持率 /% | 参考文献 |
---|---|---|---|---|---|
①硫酸固化-酸浸法 ②Ar气氛,1500℃煅烧2h | 349(0.1C) | 88.3 | 98.8 | [ | |
①N2气氛,1400℃煅烧4h ②超声振动和筛分 | 360.8 | 几乎100(100次循环,1C) | [ | ||
①500℃高温热处理 ②0.1mol/L酸性溶液浸出一夜 ③N2气氛,3000℃煅烧6h | 352.5 | 97.3(1000次循环); 87.88(1600次循环) | [ | ||
①35℃下浸泡在2mol/L硫酸中过夜 ②60℃下干燥12h ③酸浸石墨与硝酸钴加入适量的醇中并搅拌直至醇干燥 ④N2气氛,900℃煅烧4h | 358(1次循环,0.1C); 245.4(500次循环,1C) | [ | |||
①硫酸固化酸浸处理 ②微波煅烧600~900℃,1~3h | 354.1(0.1C) | 83.4 | 98.3(60次循环,0.1C) | [ | |
①95℃下,200g/L硫酸溶液中液固比(L/S)为1mL∶5g,浸出4h ②Ar气氛,900℃煅烧2h | 358.1(0.1C) | 98.8(100次循环) | [ | ||
①加入硫酸盐、氟化钠250℃低温焙烧 ②水浸 | 85.71 | 91.2(400次循环) | [ | ||
①110℃真空干燥箱干燥10h ②与不同质量比的NH4F粉末手动搅拌混合2h ③空气气氛,200℃煅烧60min | 340.9 | 92.13 | 96(100次循环,1C) 96(400次循环,1C/1C,全电池) | [ |
表1 废石墨的浸出煅烧法再生工艺及性能
工艺 | 容量 /mAh·g-1 | 首次充电比容量 /mAh·g-1 | 首次库仑效率 /% | 容量保持率 /% | 参考文献 |
---|---|---|---|---|---|
①硫酸固化-酸浸法 ②Ar气氛,1500℃煅烧2h | 349(0.1C) | 88.3 | 98.8 | [ | |
①N2气氛,1400℃煅烧4h ②超声振动和筛分 | 360.8 | 几乎100(100次循环,1C) | [ | ||
①500℃高温热处理 ②0.1mol/L酸性溶液浸出一夜 ③N2气氛,3000℃煅烧6h | 352.5 | 97.3(1000次循环); 87.88(1600次循环) | [ | ||
①35℃下浸泡在2mol/L硫酸中过夜 ②60℃下干燥12h ③酸浸石墨与硝酸钴加入适量的醇中并搅拌直至醇干燥 ④N2气氛,900℃煅烧4h | 358(1次循环,0.1C); 245.4(500次循环,1C) | [ | |||
①硫酸固化酸浸处理 ②微波煅烧600~900℃,1~3h | 354.1(0.1C) | 83.4 | 98.3(60次循环,0.1C) | [ | |
①95℃下,200g/L硫酸溶液中液固比(L/S)为1mL∶5g,浸出4h ②Ar气氛,900℃煅烧2h | 358.1(0.1C) | 98.8(100次循环) | [ | ||
①加入硫酸盐、氟化钠250℃低温焙烧 ②水浸 | 85.71 | 91.2(400次循环) | [ | ||
①110℃真空干燥箱干燥10h ②与不同质量比的NH4F粉末手动搅拌混合2h ③空气气氛,200℃煅烧60min | 340.9 | 92.13 | 96(100次循环,1C) 96(400次循环,1C/1C,全电池) | [ |
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. |
2 | DUNN Jennifer B, LINDA Gaines, JOHN Sullivan, et al. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries[J]. Environmental Science & Technology, 2012, 46(22): 12704-12710. |
3 | LI Li, FAN Ersha, GUAN Yibiao, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
4 | XU Yanan, DONG Yanying, HAN Xiao, et al. Application for simply recovered LiCoO2 material as a high-performance candidate for supercapacitor in aqueous system[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2435-2442. |
5 | PILLOT C. The rechargeable battery market and main trends 2013—2025, Proceedings of the 31st international battery seminar & exhibit[Z]. EnergyAvicenne. Shenzhen, China. 2014. |
6 | JIANG Jian, ZHU Jianhui, AI Wei, et al. Evolution of disposable bamboo chopsticks into uniform carbon fibers: A smart strategy to fabricate sustainable anodes for Li-ion batteries[J]. Energy & Environmental Science, 2014, 7(8): 2670-2679. |
7 | NIE Hehe, XU Long, SONG Dawei, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. |
8 | SCHIAVI Pier Giorgio, FARINA Luca, ZANONI Robertino, et al. Electrochemical synthesis of nanowire anodes from spent lithium ion batteries[J]. Electrochimica Acta, 2019, 319: 481-489. |
9 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
10 | NATARAJAN Subramanian, ARAVINDAN Vanchiappan. An urgent call to spent LIB recycling: Whys and wherefores for graphite recovery[J]. Advanced Energy Materials, 2020, 10(37): 2002238. |
11 | LIU Kui, YANG Shenglong, LUO Luqin, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta, 2020, 356: 136856. |
12 | WANG Huirong, HUANG Yingshan, HUANG Chenfan, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta, 2019, 313: 423-431. |
13 | CHEN Xifan, ZHU Yuanzhi, PENG Wenchao, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5(12): 5880-5885. |
14 | HE Kai, ZHANG Zhiyuan, ZHANG Fushen. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery[J]. Waste Management, 2021, 124: 283-292. |
15 | SCHIAVI Pier Giorgio, ZANONI Robertino, BRANCHI Mario, et al. Upcycling real waste mixed lithium-ion batteries by simultaneous production of rGO and lithium-manganese-rich cathode material[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13303-13311. |
16 | HAO Jie, MENG Xiangqi, FANG Sheng, et al. MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10210-10220. |
17 | NATARAJAN Subramanian, BAJAJ Hari C. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4631-4643. |
18 | ZHANG Yan, GUO Xingming, WU Feng, et al. Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21315-21325. |
19 | ZHAO Tuo, YAO Ying, WANG Meiling, et al. Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25369-25376. |
20 | ARAVINDAN Vanchiappan, JAYARAMAN Sundaramurthy, TEDJAR Farouk, et al. From electrodes to electrodes: Building high-performance Li-ion capacitors and batteries from spent lithium-ion battery carbonaceous materials[J]. ChemElectroChem, 2019, 6(5): 1407-1412. |
21 | DIVYA M L, NATARAJAN Subramanian, LEE Yun-Sung, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
22 | DIVYA Madhusoodhanan Lathika, NATARAJAN Subramanian, LEE Yun-Sung, et al. Highly reversible Na-intercalation into graphite recovered from spent Li-ion batteries for high-energy Na-ion capacitor[J]. ChemSusChem, 2020, 13(21): 5654-5663. |
23 | NATARAJAN Subramanian, KRISHNAMOORTHY Karthikeyan, KIM Sang Jae. Effective regeneration of mixed composition of spent lithium-ion batteries electrodes towards building supercapacitor[J]. Journal of Hazardous Materials, 2022, 430: 128496. |
24 | NATARAJAN Subramanian, RAO EDE Sivasankara, BAJAJ Hari C, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543: 98-108. |
25 | SCHIAVI Pier Giorgio, ALTIMARI Pietro, ZANONI Robertino, et al. Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor[J]. Journal of Energy Chemistry, 2021, 58: 336-344. |
26 | IFFELSBERGER Christian, JELLETT Cameron W, PUMERA Martin. 3D printing temperature tailors electrical and electrochemical properties through changing inner distribution of graphite/polymer[J]. Small, 2021, 17(24): e2101233. |
27 | JENA Kishore K, ALFANTAZI Akram, MAYYAS Ahmad T. Efficient and cost-effective hybrid composite materials based on thermoplastic polymer and recycled graphite[J]. Chemical Engineering Journal, 2022, 430: 132667. |
28 | NATARAJAN Subramanian, SHANTHANA LAKSHMI D, BAJAJ Hari C, et al. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer-graphite nanocomposite thin films[J]. Journal of Environmental Chemical Engineering, 2015, 3(4): 2538-2545. |
29 | Siowwoon NG, GHOSH Kalyan, VYSKOCIL Jan, et al. Two-dimensional vanadium sulfide flexible graphite/polymer films for near-infrared photoelectrocatalysis and electrochemical energy storage[J]. Chemical Engineering Journal, 2022, 435: 135131. |
30 | LIANG Haojie, HOU Baohua, LI Wenhao, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science, 2019, 12(12): 3575-3584. |
31 | YI Chenxing, GE Peng, WU Xiqing, et al. Tailoring carbon chains for repairing graphite from spent lithium-ion battery toward closed-circuit recycling[J]. Journal of Energy Chemistry, 2022, 72: 97-107. |
32 | BAHAR Moradi, BOTTE Gerardine G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(2): 123-148. |
33 | LI J, MURPHY E, WINNICK J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling[J]. Journal of Power Sources, 2001, 102(1-2): 294-301. |
34 | GUO Yang, LI Feng, ZHU Haochen, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233. |
35 | YANG Yue, SONG Shaole, LEI Shuya, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537. |
36 | BARBOSA Lucía, Fernando LUNA-LAMA, GONZÁLEZ PEÑA Yarivith, et al. Simple and eco-friendly fabrication of electrode materials and their performance in high-voltage lithium-ion batteries[J]. ChemSusChem, 2020, 13(4): 838-849. |
37 | 徐政和, 刘振达, 王树宾, 等. 湿法回收废旧锂离子电池有价金属的研究进展[J]. 中国矿业大学学报, 2022, 51(3): 454-465. |
XU Zhenghe, LIU Zhenda, WANG Shubin, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3): 454-465. | |
38 | MA Xiaotu, CHEN Mengyuan, CHEN Bin, et al. High-performance graphite recovered from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19732-19738. |
39 | XIAO Hougui, JI Guanjun, YE Long, et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888: 161593. |
40 | YANG Jingbo, FAN Ersha, LIN Jiao, et al. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching[J]. ACS Applied Energy Materials, 2021, 4(6): 6261-6268. |
41 | ZHU Xiangdong, XIAO Jin, MAO Qiuyun, et al. Recycling of waste carbon residue from spent lithium-ion batteries via constant-pressure acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1691-1704. |
42 | CHEN Qinghao, HUANG Liwu, LIU Jianbo, et al. A new approach to regenerate high-performance graphite from spent lithium-ion batteries[J]. Carbon, 2022, 189: 293-304. |
43 | GAO Yang, WANG Chengyan, ZHANG Jialiang, et al. Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9447-9455. |
44 | GAO Yang, ZHANG Jialiang, JIN Hao, et al. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment[J]. Carbon, 2022, 189: 493-502. |
45 | MENÉNDEZ J A, ARENILLAS A, FIDALGO B, et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology, 2010, 91(1): 1-8. |
46 | KIM Teawon, Changshin JO, Won-Gwang LIM, et al. Facile conversion of activated carbon to battery anode material using microwave graphitization[J]. Carbon, 2016, 104: 106-111. |
47 | CANAL-RODRÍGUEZ M, ARENILLAS A, MENÉNDEZ J A, et al. Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries[J]. Carbon, 2018, 137: 384-394. |
48 | FAN Wenwen, ZHANG Jialiang, MA Ruixin, et al. Regeneration of graphite anode from spent lithium-ion batteries via microwave calcination[J]. Journal of Electroanalytical Chemistry, 2022, 908: 116087. |
49 | YI Chenxing, YANG Yue, ZHANG Tao, et al. A green and facile approach for regeneration of graphite from spent lithium ion battery[J]. Journal of Cleaner Production, 2020, 277: 123585. |
50 | YU Haijun, DAI Hongliang, ZHU Ying, et al. Mechanistic insights into the lattice reconfiguration of the anode graphite recycled from spent high-power lithium-ion batteries[J]. Journal of Power Sources, 2021, 481: 229159. |
51 | ZHANG Zhenghua, ZHU Xiangdong, HOU Huiliang, et al. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting[J]. Waste Management, 2022, 150: 30-38. |
52 | ZHU Xiangdong, XIAO Jin, MAO Qiuyun, et al. A promising regeneration of waste carbon residue from spent lithium-ion batteries via low-temperature fluorination roasting and water leaching[J]. Chemical Engineering Journal, 2022, 430: 132703. |
53 | WANG Chunmei, ZHAO Hailei, WANG Jing, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries[J]. Ionics, 2013, 19(2): 221-226. |
54 | LI Zheng, LI Songxian, WANG Tao, et al. Facile fabrication of high-performance Li-ion battery carbonaceous anode from Li-ion battery waste[J]. Journal of the Electrochemical Society, 2021, 168(9): 090513. |
55 | GAO Yang, ZHANG Jialiang, CHEN Yongqiang, et al. Improvement of the electrochemical performance of spent graphite by asphalt coating[J]. Surfaces and Interfaces, 2021, 24: 101089. |
56 | Haoran DA, GAN Min, JIANG Danfeng, et al. Epitaxial regeneration of spent graphite anode material by an eco-friendly in-depth purification route[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16192-16202. |
57 | RUAN Dingshan, WANG Fengmei, WU Lin, et al. A high-performance regenerated graphite extracted from discarded lithium-ion batteries[J]. New Journal of Chemistry, 2021, 45(3): 1535-1540. |
58 | XIAO Yihua, LI Jian, HUANG Weiguo, et al. Green & efficient regeneration of graphite anode from spent lithium ion batteries enabled by asphalt coating[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(21): 16740-16752. |
59 | ZHANG Jin, LI Xuelei, SONG Dawei, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources, 2018, 390: 38-44. |
60 | MA Zhen, ZHUANG Yuchan, DENG Yaoming, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries[J]. Journal of Power Sources, 2018, 376: 91-99. |
61 | FENG Tianyu, XU Youlong, ZHANG Zhengwei, et al. Low-cost Al2O3 coating layer as a preformed SEI on natural graphite powder to improve coulombic efficiency and high-rate cycling stability of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6512-6519. |
62 | TALLMAN Killian R, YAN Shan, QUILTY Calvin D, et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes[J]. Journal of the Electrochemical Society, 2020, 167(16): 160503. |
63 | RUAN Dingshan, WU Lin, WANG Fengmei, et al. A low-cost silicon-graphite anode made from recycled graphite of spent lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 884: 115073. |
64 | XU Qi, WANG Qianwen, CHEN Dequan, et al. Silicon/graphite composite anode with constrained swelling and a stable solid electrolyte interphase enabled by spent graphite[J]. Green Chemistry, 2021, 23(12): 4531-4539. |
65 | Hyeon Gyun NAM, PARK Jae Yeol, Jong Min YUK, et al. Phase transformation mechanism and stress evolution in Sn anode[J]. Energy Storage Materials, 2022, 45: 101-109. |
66 | ZHU Xiangdong, XIAO Jin, CHEN Yiwen, et al. A high-performance nano-Sn/G@C composite anode prepared by waste carbon residue from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 450: 138113. |
67 | 侯冬慧. 微波改性回收锂电石墨制备高性能负极材料的研究[D]. 郑州:郑州大学, 2021. |
HOU Donghui. Preparation and properties of high-performance anode materials with microwave-modified spent graphite from lithium ion battery[D]. Zhengzhou: Zhengzhou University, 2021. | |
68 | XIAO Z, GAO L, SU S, et al. Efficient fabrication of metal sulfides/graphite anode materials derived from spent lithium-ion batteries by gas sulfidation process[J]. Materials Today Energy, 2021, 21: 100821. |
69 | YE Long, WANG Chunhui, CAO Liang, et al. Effective regeneration of high-performance anode material recycled from the whole electrodes in spent lithium-ion batteries via a simplified approach[J]. Green Energy & Environment, 2021, 6(5): 725-733. |
70 | PENG Chao, MERCER Michael P, SKYLARIS Chris-Kriton, et al. Lithium intercalation edge effects and doping implications for graphite anodes[J]. Journal of Materials Chemistry A, 2020, 8(16): 7947-7955. |
71 | XU Chong, MA Guang, YANG Wang, et al. One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries[J]. Electrochimica Acta, 2022, 415: 140198. |
72 | MARKEY Brandon, ZHANG Minghao, ROBB Iva, et al. Effective upcycling of graphite anode: Healing and doping enabled direct regeneration[J]. Journal of the Electrochemical Society, 2020, 167(16): 160511. |
[1] | 卢志强, 石雨, 陈鹏宇, 张亮, 李俊, 付乾, 朱恂, 廖强. 具有高浓度氨腔室的立式热再生氨电池性能特性[J]. 化工进展, 2024, 43(3): 1224-1231. |
[2] | 严昱, 夏芯, 骆俊鹏, 刘大朋, 钱飞跃. 氧化剂类型对rGO/CNTs催化膜去除水中消炎药成分的影响[J]. 化工进展, 2024, 43(3): 1436-1445. |
[3] | 闫守成, 张慧华, 徐倩倩, 王煜坤. 石墨烯复合载体催化剂在柴油车尾气NO脱除中的应用[J]. 化工进展, 2024, 43(3): 1456-1465. |
[4] | 王岩森, 侯丹丹, 李长金, 祁丽亚, 王春堯, 郭敏, 王颖. 氧化石墨烯/聚丙烯酸基导电黏附凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1022-1032. |
[5] | 李文鹏, 刘晴, 杨志荣, 高展鹏, 王景涛, 周鸣亮, 张金利. 液相剥离法高效制备石墨烯的研究进展[J]. 化工进展, 2024, 43(1): 215-231. |
[6] | 曾悦, 王月, 张学瑞, 宋玺文, 夏博文, 陈梓颀. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
[7] | 卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528. |
[8] | 任鹏锟, 仲兆平, 杨宇轩, 张杉, 杜浩然, 李骞. 改性海泡石对污泥热解过程中重金属的控制[J]. 化工进展, 2024, 43(1): 541-550. |
[9] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[10] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[11] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[12] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[13] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[14] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[15] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |