1 |
SHARMA Shirish Kumar, SHIVAPUJI Anand M, DASAPPA S. Characterization of a novel two-stage high ash coal gasifier for low tar and high calorific value gas[J]. Applied Thermal Engineering, 2024, 237: 121775.
|
2 |
BOTTA Luigi, LA MANTIA Francesco Paolo, CERAULO Manuela, et al. Effect of processing temperature and mixing time on the properties of PP/GnP nanocomposites[J]. Polymer Degradation and Stability, 2020, 181: 109321.
|
3 |
BOOMADEVI P, PAULSON V, SAMLAL Stanley, et al. Impact of microalgae biofuel on microgas turbine aviation engine: A combustion and emission study[J]. Fuel, 2021, 302: 121155.
|
4 |
HWANG Ouk, LEE Min Chul, WENG Wubin, et al. Development of novel ultrasonic temperature measurement technology for combustion gas as a potential indicator of combustion instability diagnostics[J]. Applied Thermal Engineering, 2019, 159: 113905.
|
5 |
SHCHEPAKINA Elena Anatolievna, ZUBRILIN Ivan Alexandrovich, KUZNETSOV Alexey Yurievich, et al. Physical and chemical features of hydrogen combustion and their influence on the characteristics of gas turbine combustion chambers[J]. Applied Sciences, 2023, 13(6): 3754.
|
6 |
SALINAS Carlos T, PU Yang, LOU Chun, et al. Experiments for combustion temperature measurements in a sugarcane bagasse large-scale boiler furnace[J]. Applied Thermal Engineering, 2020, 175: 115433.
|
7 |
ELIAS Jessy, FACCINETTO Alessandro, BATUT Sebastien, et al. Thermocouple-based thermometry for laminar sooting flames: Implementation of a fast and simple methodology[J]. International Journal of Thermal Sciences, 2023, 184: 107973.
|
8 |
WU Wendong, ADEOSUN Adewale, AXELBAUM Richard L. A new method of flame temperature measurement utilizing the acoustic emissions from laser-induced plasmas[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1409-1415.
|
9 |
LIU Hecong, SUN Bin, CAI Weiwei. kHz-rate volumetric flame imaging using a single camera[J]. Optics Communications, 2019, 437: 33-43.
|
10 |
KIM Dennis K, SUNDERLAND Peter B. Fire ember pyrometry using a color camera[J]. Fire Safety Journal, 2019, 106: 88-93.
|
11 |
QI Qi, HOSSAIN Md Moinul, LEI Gang, et al. Optimum angular arrangement of a multi-light field imaging technique for flame temperature reconstruction[J]. Measurement, 2022, 204: 112110.
|
12 |
ZHANG Biao, WANG Chen, LIU Yudong, et al. Reconstruction of 3D temperature profile of radiative participatory flame based on digital refocusing technique of light field camera[J]. International Journal of Photoenergy, 2019, 2019: 1-13.
|
13 |
RODRÍGUEZ A, ESCUDERO F, CRUZ J J, et al. Retrieving soot volume fraction fields for laminar axisymmetric diffusion flames using convolutional neural networks[J]. Fuel, 2021, 285: 119011.
|
14 |
唐广通, 许烨烽, 闫慧博, 等. 基于深度学习与热辐射成像耦合的炉内温度场在线测量[J]. 动力工程学报, 2022, 42(10): 960-966.
|
|
TANG Guangtong, XU Yefeng, YAN Huibo, et al. Research of on-line measurement of temperature field in furnaces based on deep learning coupled thermal radiative imaging[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 960-966.
|
15 |
李智聪, 娄春. 基于深度学习的乙烯层流扩散火焰温度和碳烟体积分数分布重建[J]. 燃烧科学与技术, 2022, 28(2): 198-205.
|
|
LI Zhicong, LOU Chun. Reconstruction of temperature and soot volume fraction distribution of ethylene laminar diffusion flame based on deep learning[J]. Journal of Combustion Science and Technology, 2022, 28(2): 198-205.
|
16 |
QU Xiangju, SONG Yang, JIN Ying, et al. 3D particle field reconstruction method based on convolutional neural network for SAPIV[J]. Optics Express, 2019, 27(8): 11413.
|
17 |
WANG Zhenyu, SONG Chunfeng, CHEN Tao. Deep learning based monitoring of furnace combustion state and measurement of heat release rate[J]. Energy, 2017, 131: 106-112.
|
18 |
JIN Ying, ZHANG Wanqing, SONG Yang, et al. Three-dimensional rapid flame chemiluminescence tomography via deep learning[J]. Optics Express, 2019, 27(19): 27308-27334.
|
19 |
张杰, 齐琪, 韩哲哲, 等. 基于深度学习和光场成像的火焰三维温度场重建算法[J]. 东南大学学报(自然科学版), 2021, 51(6): 1060-1067.
|
|
ZHANG Jie, QI Qi, HAN Zhezhe, et al. Reconstruction algorithm of flame 3D temperature distribution based on deep learning and light field imaging[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(6): 1060-1067.
|
20 |
LI Jian, HOSSAIN Md Moinul, SUN Jun, et al. Simultaneous measurement of flame temperature and absorption coefficient through LMBC-NNLS and plenoptic imaging techniques[J]. Applied Thermal Engineering, 2019, 154: 711-725.
|
21 |
TORU Iwane, MARIE Shoda. Light-field camera and display as information retrieval systems for three-dimensional images[J]. Optical Engineering, 2018, 57(6): 061616.
|
22 |
WAFA Abrar, POURAZAD Mahsa T, NASIOPOULOS Panos. A deep learning based spatial super-resolution approach for light field content[J]. IEEE Access, 2020, 9: 2080-2092.
|
23 |
WANG Xinya, MA Jiayi, GAO Wenjing, et al. MPIN: A macro-pixel integration network for light field super-resolution[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1299-1310.
|
24 |
YUE Huanjing, SHEN Sheng, YANG Jingyu, et al. Reference image guided super-resolution via progressive channel attention networks[J]. Journal of Computer Science and Technology, 2020, 35(3): 551-563.
|
25 |
LI Fengpeng, FENG Ruyi, HAN Wei, et al. Ensemble model with cascade attention mechanism for high-resolution remote sensing image scene classification[J]. Optics Express, 2020, 28(15): 22358.
|
26 |
Sanghyun WOO, PARK Jongchan, LEE Joon-Young, et al. CBAM: Convolutional block attention module[C]//Computer Vision - ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part Ⅶ. New York: ACM, 2018: 3-19.
|
27 |
INAN Onur, UZER Mustafa Serter. A method of classification performance improvement via a strategy of clustering-based data elimination integrated with K-fold cross-validation[J]. Arabian Journal for Science and Engineering, 2021, 46(2): 1199-1212.
|