化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6438-6451.DOI: 10.16085/j.issn.1000-6613.2023-0197
• 材料科学与技术 • 上一篇
周颖1(), 郝康安2, 王少凡1, 黄安荣3, 吴翀4, 左晓玲1()
收稿日期:
2023-02-15
修回日期:
2023-04-16
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
左晓玲
作者简介:
周颖(1997—),女,硕士研究生,研究方向为可见光固化技术。E-mail:2368099287@qq.com。
基金资助:
ZHOU Ying1(), HAO Kang'an2, WANG Shaofan1, HUANG Anrong3, WU Chong4, ZUO Xiaoling1()
Received:
2023-02-15
Revised:
2023-04-16
Online:
2023-12-25
Published:
2024-01-08
Contact:
ZUO Xiaoling
摘要:
染料由于其优异的光化学和光物理性质引起了光固化领域极大的研究兴趣。将染料引入传统的光引发体系不仅可以提高体系对可见光的吸收能力,还能有效提高光引发聚合反应速率。在可见光源下,染料基多功能光引发体系不但可以成功引发多种丙烯酸酯的自由基聚合反应和环氧化物的阳离子聚合反应,同时在材料高效制备和光固化型3D打印等方面也显示出广阔的应用前景。基于此,本文总结了染料作为光敏剂的作用机理,综述了近年来不同类型的染料在可见光引发体系中的研究进展,对未来可见光染料基光敏剂的进一步发展进行了展望,并强调将染料直接引入可见光引发体系的重要意义,旨在促进材料制备向着更加节能、环保的方向发展,为可见光引发体系的未来设计和发展提供新思路。
中图分类号:
周颖, 郝康安, 王少凡, 黄安荣, 吴翀, 左晓玲. 可见光响应型染料基多功能光引发体系的研究进展[J]. 化工进展, 2023, 42(12): 6438-6451.
ZHOU Ying, HAO Kang'an, WANG Shaofan, HUANG Anrong, WU Chong, ZUO Xiaoling. Research progress of visible-light-responsive dye-based multi-functional photoinitiating systems[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6438-6451.
染料 | 光吸收性能 | 适用的辐照光源 | 光聚合类型 | 单体类型及其转化率 | 颜色 | 参考文献 |
---|---|---|---|---|---|---|
CCM (CCM/Iod/TPP PIS) | ε417nm约58500L/(mol·cm) | Lamp 407nm/Sunlight LED bulbs 392nm 455nm 518nm | 自由基/阳离子 光聚合反应 | Bis-GMA/TEGDMA (300s;71%) | 黄色 | [ |
14-DHAQ (14-DHAQ/Iod/NVK PIS) (14-DHAQ/TEAOH/R-Br PIS) | ε455nm约7000L/(mol·cm) | LED 455nm | 自由基/阳离子 光聚合反应 | Bis-GMA and TEGDMA (300s;50%),EPOX (800s;67%) | 多色 | [ |
15-DHAQ (15-DHAQ/Iod/NVK PIS) (15-DHAQ/TEAOH/R-Br PIS) | ε455nm约3500L/(mol·cm) | LED 455nm | 自由基/阳离子 光聚合反应 | Bis-GMA and TEGDMA (300s;42%),EPOX (800s;15%) | 多色 | [ |
18-DHAQ (18-DHAQ/Iod/NVK PIS) (18-DHAQ/TEAOH/R-Br PIS) | ε455nm约3900L/(mol·cm) | LED 455nm | 自由基/阳离子 光聚合反应 | Bis-GMA and TEGDMA (300s;55%),EPOX (800s;79%) | 多色 | [ |
ECMO (ECMO/THS PIS) | ε405nm约11800L/(mol·cm) | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | HDDA (300s;64%) | 黄色 | [ |
3HF-S (3HF-S/TEOA PIS) | ε405nm约17448L/(mol·cm) | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | TPGDA (180s;80%) | 黄色 | [ |
3HF-C (3HF-C/TEOA PIS) | ε405nm约16071L/(mol·cm) | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | TPGDA (180s;20%) | 黄色 | [ |
3HF-F (3HF-F/TEOA PIS) | — | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | PEGDA (300s;82%) | 黄色 | [ |
CA-ID-4 (CA-ID-4/MDEA PIS) | ε535nm约72000L/(mol·cm) | LED bulb (525nm) | 自由基/阳离子 光聚合反应 | HDDA (30min;74.2%) | 红色 | [ |
CI-2 (CI-2/MDEA PIS) | ε510nm约11738L/(mol·cm) | LED bulb (455nm) | 自由基/阳离子 光聚合反应 | HDDA (30min;86%) | 红色 | [ |
DCJTB (DCJTB/Iod PIS) (DCJTB/Iod/NVK PIS) (DCJTB/MDEA/R′-Cl PIS) | ε501nm约51100L/(mol·cm) | Laser diode (532nm) halogen lamp | 自由基/阳离子 光聚合反应 | EPOX (DCJTB/Iod/NVK PIS;800s;66%) | 红色 | [ |
h-B3FL (h-B3FL/Iod PIS) (h-B3FL/Iod/NVK PIS) (h-B3FL/MDEA/R′-Cl PIS) | ε484nm约18300L/(mol·cm) | Laser diode (532nm) halogen lamp | 自由基/阳离子 光聚合反应 | EPOX (h-B3FL/Iod/NVK PIS:800s;33%)) | 红色 | [ |
OB28 (OB28/Iod PIS) | ε400nm约13400L/(mol·cm) | LED@420nm | 自由基光聚合反应 | TMPTA (600s;42%) | 白色 | [ |
QTXP (QTXP/NVK/Iod PIS) | ε443nm约8000L/(mol·cm) | halogen lamp laser diode (457nm) LED@462nm | 自由基/阳离子 光聚合反应 | EPOX (457nm:800s;62%) | 无色 | [ |
PQTXP (PQTXP/NVK/Iod PIS) | — | halogen lamp laser diode (457nm) | 自由基/阳离子 光聚合反应 | EPOX (457nm:800s;48%) | 无色 | [ |
A3 (A3/Iod/EDB PIS) | ε330nm约33000L/(mol·cm) | LED@405nm LED@455nm | 阳离子光聚合反应 | EPOX (405nm:800s;55%; 455nm:800s;54%) | 无色 | [ |
表1 可应用于光引发体系的染料结构式及相应光引发特性
染料 | 光吸收性能 | 适用的辐照光源 | 光聚合类型 | 单体类型及其转化率 | 颜色 | 参考文献 |
---|---|---|---|---|---|---|
CCM (CCM/Iod/TPP PIS) | ε417nm约58500L/(mol·cm) | Lamp 407nm/Sunlight LED bulbs 392nm 455nm 518nm | 自由基/阳离子 光聚合反应 | Bis-GMA/TEGDMA (300s;71%) | 黄色 | [ |
14-DHAQ (14-DHAQ/Iod/NVK PIS) (14-DHAQ/TEAOH/R-Br PIS) | ε455nm约7000L/(mol·cm) | LED 455nm | 自由基/阳离子 光聚合反应 | Bis-GMA and TEGDMA (300s;50%),EPOX (800s;67%) | 多色 | [ |
15-DHAQ (15-DHAQ/Iod/NVK PIS) (15-DHAQ/TEAOH/R-Br PIS) | ε455nm约3500L/(mol·cm) | LED 455nm | 自由基/阳离子 光聚合反应 | Bis-GMA and TEGDMA (300s;42%),EPOX (800s;15%) | 多色 | [ |
18-DHAQ (18-DHAQ/Iod/NVK PIS) (18-DHAQ/TEAOH/R-Br PIS) | ε455nm约3900L/(mol·cm) | LED 455nm | 自由基/阳离子 光聚合反应 | Bis-GMA and TEGDMA (300s;55%),EPOX (800s;79%) | 多色 | [ |
ECMO (ECMO/THS PIS) | ε405nm约11800L/(mol·cm) | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | HDDA (300s;64%) | 黄色 | [ |
3HF-S (3HF-S/TEOA PIS) | ε405nm约17448L/(mol·cm) | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | TPGDA (180s;80%) | 黄色 | [ |
3HF-C (3HF-C/TEOA PIS) | ε405nm约16071L/(mol·cm) | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | TPGDA (180s;20%) | 黄色 | [ |
3HF-F (3HF-F/TEOA PIS) | — | LED bulb (405nm) | 自由基/阳离子 光聚合反应 | PEGDA (300s;82%) | 黄色 | [ |
CA-ID-4 (CA-ID-4/MDEA PIS) | ε535nm约72000L/(mol·cm) | LED bulb (525nm) | 自由基/阳离子 光聚合反应 | HDDA (30min;74.2%) | 红色 | [ |
CI-2 (CI-2/MDEA PIS) | ε510nm约11738L/(mol·cm) | LED bulb (455nm) | 自由基/阳离子 光聚合反应 | HDDA (30min;86%) | 红色 | [ |
DCJTB (DCJTB/Iod PIS) (DCJTB/Iod/NVK PIS) (DCJTB/MDEA/R′-Cl PIS) | ε501nm约51100L/(mol·cm) | Laser diode (532nm) halogen lamp | 自由基/阳离子 光聚合反应 | EPOX (DCJTB/Iod/NVK PIS;800s;66%) | 红色 | [ |
h-B3FL (h-B3FL/Iod PIS) (h-B3FL/Iod/NVK PIS) (h-B3FL/MDEA/R′-Cl PIS) | ε484nm约18300L/(mol·cm) | Laser diode (532nm) halogen lamp | 自由基/阳离子 光聚合反应 | EPOX (h-B3FL/Iod/NVK PIS:800s;33%)) | 红色 | [ |
OB28 (OB28/Iod PIS) | ε400nm约13400L/(mol·cm) | LED@420nm | 自由基光聚合反应 | TMPTA (600s;42%) | 白色 | [ |
QTXP (QTXP/NVK/Iod PIS) | ε443nm约8000L/(mol·cm) | halogen lamp laser diode (457nm) LED@462nm | 自由基/阳离子 光聚合反应 | EPOX (457nm:800s;62%) | 无色 | [ |
PQTXP (PQTXP/NVK/Iod PIS) | — | halogen lamp laser diode (457nm) | 自由基/阳离子 光聚合反应 | EPOX (457nm:800s;48%) | 无色 | [ |
A3 (A3/Iod/EDB PIS) | ε330nm约33000L/(mol·cm) | LED@405nm LED@455nm | 阳离子光聚合反应 | EPOX (405nm:800s;55%; 455nm:800s;54%) | 无色 | [ |
1 | 孟庆华, 杨征勤, 刘珊, 等. 染料在光敏领域的研究与产业应用[J]. 精细与专用化学品, 2008, 16(1): 23-25. |
MENG Qinghua, YANG Zhengqin, LIU Shan, et al. Research and industrial application of dyes in photosensitive field[J]. Fine and Specialty Chemicals, 2008, 16(1): 23-25. | |
2 | 徐华. 多羧酸及多羧酸酯型大分子染料的合成和应用[D]. 大连: 大连理工大学, 2011. |
XU Hua. Synthesis and application of polycarboxylic acid and polycarboxylic ester macromolecular dyes[D]. Dalian: Dalian University of Technology, 2011. | |
3 | WALTHER T, JAHNKE K, ABELE T, et al. Printing and erasing of DNA-based photoresists inside synthetic cells[J]. Advanced Functional Materials, 2022, 32(25): 2200762. |
4 | HANNIET Q, PETIT E, CALAS-ETIENNE S, et al. Rational design of SiBCN microstructures using direct photolithography of patternable preceramic photoresists[J]. Materials & Design, 2022, 223: 111234. |
5 | CAO Chun, LIU Jianting, XIA Xianmeng, et al. Click chemistry assisted organic-inorganic hybrid photoresist for ultra-fast two-photon lithography[J]. Additive Manufacturing, 2022, 51: 102658. |
6 | CHEN Yu, LIU Ren, LUO Jing. Enhancing weathering resistance of UV-curable coatings by using TiO2 particles as filler[J]. Progress in Organic Coatings, 2022, 169: 106936. |
7 | JIAO Xiaojiao, SONG Yan, HE Na, et al. Preparation and performance of nitrogen-phosphorus-silicone-containing flame retardant UV-curable coatings with high transparency[J]. Progress in Organic Coatings, 2022, 173: 107169. |
8 | ISO T, NINOMIYA T, KAGAMI S, et al. Environmentally-friendly UV-curable coatings utilizing bio-based polyester acrylates[J]. Progress in Organic Coatings, 2023, 175: 107356. |
9 | LI Xiaoquan, BIAN Fuping, LI Shi, et al. Preparation of siloxymethyl-modified silicone acrylate prepolymers with UV/moisture dual curability for applications in anti-smudge and anti-fingerprint coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130669. |
10 | WANG Jieqiu, PANG Fei, FU Qianqian, et al. Fabrication of anti-counterfeiting patterns with angle-dependent colors by silkscreen printing and UV-curable photonic crystal inks[J]. Science China Materials, 2023, 66(4): 1623-1631. |
11 | XU Xi, YANG Jiayu, JONHSON Win, et al. Additive manufacturing solidification methodologies for ink formulation[J]. Additive Manufacturing, 2022, 56: 102939. |
12 | YANG Yubin, DING Jingyu, ZHU Xuanyan, et al. Triclosan to improve the antimicrobial performance of universal adhesives[J]. Polymers, 2023, 15(2): 304. |
13 | MAENG Seong-Woo, PARK Tae Yoon, MIN Ji sang, et al. Sutureless transplantation of amniotic membrane using a visible light-curable protein bioadhesive for ocular surface reconstruction[J]. Advanced Healthcare Materials, 2021, 10(13): e2100100. |
14 | ZHAO Menglu, GENG Yanan, FAN Suna, et al. 3D-printed strong hybrid materials with low shrinkage for dental restoration[J]. Composites Science and Technology, 2021, 213: 108902. |
15 | GARCÍA-MOTA L F, HARDAN L, BOURGI R, et al. Light-cured calcium silicate based-cements as pulp therapeutic agents: A meta-analysis of clinical studies[J]. Journal of Evidence-Based Dental Practice, 2022, 22(4): 101776. |
16 | LEBEDEVAITE M, GINEIKA A, TALACKA V, et al. Development and optical 3D printing of acrylated epoxidized soybean oil-based composites with functionalized calcium silicate hydrate filler derived from aluminium fluoride production waste[J]. Composites Part A: Applied Science and Manufacturing, 2022, 157: 106929. |
17 | ZHAO Xuan, LI Saiqun, DU Xinyue, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty[J]. Bioactive Materials, 2022, 8: 196-209. |
18 | CHEN Haotao, YANG Junlai, SU Jiahui, et al. Facile fabrication of biobased porous material via the photocuring technique and a template-assisted approach for oil/water separation[J]. Separation and Purification Technology, 2022, 303: 122239. |
19 | LIU Zhenzhong, WU Chenglin, FU Yabo, et al. Synthesis of Janus Au@BCP nanoparticles via UV light-initiated RAFT polymerization-induced self-assembly[J]. Nanoscale Advances, 2021, 3(2): 347-352. |
20 | WANG Qianqian, ZENG Jia, LI Jie, et al. Multifunctional fiber derived from wet spinning combined with UV photopolymerization for human motion and temperature detection[J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 26. |
21 | FU Donglei, CHEN Tao, LIU Honglei, et al. An ultraviolet self-initiated polymerized platform for specific recognition and elimination of caffeic acid based on the molecular imprinting technology[J]. Sensors and Actuators B: Chemical, 2022, 361: 131659. |
22 | DING Xiaoli, HUA Mingming, ZHAO Hongyong, et al. Poly(ethylene oxide) composite membrane synthesized by UV-initiated free radical photopolymerization for CO2 separation[J]. Journal of Membrane Science, 2017, 531: 129-137. |
23 | 陈用烈, 曾兆华, 杨建文. 辐射固化材料及其应用[M]. 北京: 化学工业出版社, 2003. |
CHEN Yonglie, ZENG Zhaohua, YANG Jianwen. Radiation curing materials and their applications[M]. Beijing: Chemical Industry Press, 2003. | |
24 | SHI Suqing, CROUTXÉ-BARGHORN C, ALLONAS X. Photoinitiating systems for cationic photopolymerization: Ongoing push toward long wavelengths and low light intensities[J]. Progress in Polymer Science, 2017, 65: 1-41. |
25 | XIAO Pu, ZHANG Jing, DUMUR F, et al. Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions[J]. Progress in Polymer Science, 2015, 41: 32-66. |
26 | M-A TEHFE, LEPELTIER M, DUMUR F, et al. Structural effects in the iridium complex series: Photoredox catalysis and photoinitiation of polymerization reactions under visible lights[J]. Macromolecular Chemistry and Physics, 2017, 218: 1700192. |
27 | EREN T N, GRAFF B, LALEVEE J, et al. Thioxanthone-functionalized 1,6-heptadiene as monomeric photoinitiator[J]. Progress in Organic Coatings, 2019, 128: 148-156. |
28 | SAYED A, ELBALASY I, MOHAMED M S. Novel β-carotene and astaxanthin-producing marine Planococcus sp.: Insights into carotenogenesis regulation and genetic aspects[J]. Applied Biochemistry and Biotechnology, 2023, 195(1): 217-235. |
29 | SINGH R V, SAMBYAL K. An overview of β-carotene production: Current status and future prospects[J]. Food Bioscience, 2022, 47: 101717. |
30 | DARIJANI M, SHAHRAKI M, HABIBI-KHORASSANI S M. Theoretical study on the mechanism and kinetics of the formation β-carotene epoxides from the oxidative degradation of β-carotene[J]. Food Chemistry, 2022, 389: 133082. |
31 | BRELOY L, OUARABI C A, BROSSEAU A, et al. β-Carotene/limonene derivatives/eugenol: Green synthesis of antibacterial coatings under visible-light exposure[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19591-19604. |
32 | LI Zijing, HUANG Bin, WANG Yuan, et al. Design, synthesis and application in biological imaging of a novel red fluorescent dye based on a rhodanine derivative[J]. RSC Advances, 2021, 11(1): 160-163. |
33 | LIU Ran, XU Yuanyuan, WANG Lei, et al. Visible light-induced cationic photopolymerization by diphenyliodonium hexafluorophosphate and benzothiadiazole dyes[J]. Polymer Bulletin, 2021, 78(9): 4849-4862. |
34 | PENG Jinbao, QI Xinxin, WU Xiaofeng. Visible light-induced carbonylation reactions with organic dyes as the photosensitizers[J]. ChemSusChem, 2016, 9(17): 2279-2283. |
35 | TURKSOY A, YILDIZ D, AKKAYA E U. Photosensitization and controlled photosensitization with BODIPY dyes[J]. Coordination Chemistry Reviews, 2019, 379: 47-64. |
36 | HU Tianyu, FU Hongyuan, XIONG Jinping, et al. Benzylidene piperidones as photosensitizers for visible light photopolymerization[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405: 112968. |
37 | 聂俊, 肖鸣. 光聚合技术与应用[M]. 北京: 化学工业出版社, 2009. |
NIE Jun, XIAO Ming. Photopolymerization technology and its application[M]. Beijing: Chemical Industry Press, 2009. | |
38 | 樊美公, 姚建年, 佟振合. 分子光化学与光功能材料科学[M]. 北京: 科学出版社, 2009. |
FAN Meigong, YAO Jiannian, TONG Zhenhe. Molecular photochemistry and photofunctional materials science[M]. Beijing: Science Press, 2009. | |
39 | VOLL D, BARNER‐KOWOLLIK C. Photoinitiators for polymer synthesis: Scope, reactivity, and efficiency. von Jean‐Pierre Fouassier und Jacques Lalavée[J]. Angewandte Chemie, 2013, 125: 3394. |
40 | LALEVÉE J, DUMUR F, M-A TEHFE, et al. Dye photosensitized cationic ring-opening polymerization: Search for new dye skeletons[J]. Polymer, 2012, 53(22): 4947-4954. |
41 | ABDALLAH M, HIJAZI A, GRAFF B, et al. Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis[J]. Polymer Chemistry, 2019, 10(7): 872-884. |
42 | TELITEL S, SCHWEIZER S, MORLET-SAVARY F, et al. Soft photopolymerizations initiated by dye-sensitized formation of NHC-boryl radicals under visible light[J]. Macromolecules, 2013, 46(1): 43-48. |
43 | A-H BONARDI, DUMUR F, GRANT T M, et al. High performance near-infrared (NIR) photoinitiating systems operating under low light intensity and in the presence of oxygen[J]. Macromolecules, 2018, 51: 1314-1324. |
44 | ZHAO Jiacheng, LALEVÉE J, LU Hongxu, et al. A new role of curcumin: As a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs[J]. Polymer Chemistry, 2015, 6(28): 5053-5061. |
45 | ZHANG Jing, LALEVÉE J, ZHAO Jiacheng, et al. Dihydroxyanthraquinone derivatives: Natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization[J]. Polymer Chemistry, 2016, 7(47): 7316-7324. |
46 | LI Yang, SHAUKAT U, SCHLÖGL S, et al. A pyrrole-carbazole photoinitiator for radical and cationic visible light LED photopolymerization[J]. European Polymer Journal, 2023, 182: 111700. |
47 | YOU Jian, CAO Ding, HU Tianyu, et al. Novel Norrish type I flavonoid photoinitiator for safe LED light with high activity and low toxicity by inhibiting the ESIPT process[J]. Dyes and Pigments, 2021, 184: 108865. |
48 | YOU Jian, DU Yao, XUE Tanlong, et al. The three-component photoinitiating systems based on flavonol sulfonate and application in 3D printing[J]. Dyes and Pigments, 2022, 197: 109899. |
49 | LIAO Wen, LIAO Qiuyan, XU Can, et al. Structural effects of cinnamoyl-indanone-based photobleachable free radical visible initiators[J]. ACS Applied Polymer Materials, 2022, 4(9): 6466-6476. |
50 | XU Can, GONG Shang, WU Xiang, et al. High-efficient carbazole-based photo-bleachable dyes as free radical initiators for visible light polymerization[J]. Dyes and Pigments, 2022, 198: 110039. |
51 | XIAO Pu, FRIGOLI M, DUMUR F, et al. Julolidine or fluorenone based push-pull dyes for polymerization upon soft polychromatic visible light or green light[J]. Macromolecules, 2014, 47(1): 106-112. |
52 | ZUO Xiaoling, MORLET-SAVARY F, GRAFF B, et al. Fluorescent brighteners as visible LED-light sensitive photoinitiators for free radical photopolymerizations[J]. Macromolecular Rapid Communications, 2016, 37(10): 840-844. |
53 | XIAO P, DUMUR F, THIRION D, et al. Multicolor photoinitiators for radical and cationic polymerization: Monofunctional vs polyfunctional thiophene derivatives[J]. Macromolecules, 2013, 46: 6786-6793. |
54 | MOUSAWI A AL, LARA D M, NOIRBENT G, et al. Carbazole derivatives with thermally activated delayed fluorescence property as photoinitiators/photoredox catalysts for LED 3D printing technology[J]. Macromolecules, 2017, 50(13): 4913-4926. |
55 | HASANZADEH S, READ M I, BLAND A R, et al. Curcumin: An inflammasome silencer[J]. Pharmacological Research, 2020, 159: 104921. |
56 | XIANG Debiao, ZHANG Kaiqiang, ZENG Yaling, et al. Curcumin from a controversial "panacea" to effective antineoplastic products[J]. Medicine, 2020, 99(2): e18467. |
57 | SHAH M, MURAD W, MUBIN S, et al. Multiple health benefits of curcumin and its therapeutic potential[J]. Environmental Science and Pollution Research International, 2022, 29(29): 43732-43744. |
58 | MOUSAWI A AL, GARRA P, DUMUR F, et al. Flavones as natural photoinitiators for light mediated free-radical polymerization via light emitting diodes[J]. Journal of Polymer Science, 2020, 58(2): 254-262. |
59 | CONDAT M, BABINOT J, TOMANE S, et al. Development of photoactivable glycerol-based coatings containing quercetin for antibacterial applications[J]. RSC Advances, 2016, 6(22): 18235-18245. |
60 | SHANMUGHAM V, SUBBAN R. Capsanthin from Capsicum annum fruits exerts anti-glaucoma, antioxidant, anti-inflammatory activity, and corneal pro-inflammatory cytokine gene expression in a benzalkonium chloride-induced rat dry eye model[J]. Journal of Food Biochemistry, 2022, 46(10): e14352. |
61 | RICHBART S D, NOLAN N A, AKERS A T, et al. Anti-invasive and anti-metastatic activity of capsaicin and natural capsaicin-like compounds in lung adenocarcinoma[J]. The FASEB Journal, 2022, 36(S1). |
62 | SAUTROT-BA P, J-P MALVAL, WEISS-MAURIN M, et al. Paprika, gallic acid, and visible light: The green combination for the synthesis of biocide coatings[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 104-109. |
63 | TIKHOMIROV A S, ANDREEVA D V, SHCHEKOTIKHIN A E. Reductive elimination of alkoxy group in anthraquinone derivatives[J]. Tetrahedron, 2022, 122: 132957. |
64 | MING Mei, YUAN Huiqing, YANG Shuang, et al. Efficient red-light-driven hydrogen evolution with an anthraquinone organic dye[J]. Journal of the American Chemical Society, 2022, 144(43): 19680-19684. |
65 | YUAN Zhenbo, XU Huibin, ZHANG Yan, et al. Biosynthetic pathways of dimeric natural products containing bisanthraquinone and related xanthones[J]. Chembiochem, 2023, 24(5): e202200586. |
66 | NAYAK Y N, GAONKAR S L, SABU M. Chalcones: Versatile intermediates in heterocyclic synthesis[J]. Journal of Heterocyclic Chemistry, 2023, 60(8): 1301-1325. |
67 | ELKANZI N A A, HRICHI H, ALOLAYAN R A, et al. Synthesis of chalcones derivatives and their biological activities: A review[J]. ACS Omega, 2022, 7(32): 27769-27786. |
68 | SILVA L DA, DONATO I A, GONÇALVES C A C, et al. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus [J]. 3 Biotech, 2023, 13(1): 1. |
69 | SEKARAN S, ROY A, THANGAVELU L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts - A review on its molecular mode of action[J]. Chemico-Biological Interactions, 2022, 355: 109831. |
70 | FU Zhouping, JIANG Xiaolan, KONG Dexu, et al. Flavonol-aluminum complex formation: Enhancing aluminum accumulation in tea plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(43): 14096-14108. |
71 | GANGOPADHYAY A, CHAKRABORTY S, JASH S K, et al. Cytotoxicity of natural flavones and flavonols against different cancer cells[J]. Journal of the Iranian Chemical Society, 2022, 19(5): 1547-1573. |
72 | KIRILLOVA A, MAXSON R, STOYCHEV G, et al. 4D biofabrication using shape-morphing hydrogels[J]. Advanced Materials, 2017, 29(46): 1703443. |
73 | DENG Yongdie, ZHANG Fenghua, JIANG Menglu, et al. Programmable 4D printing of photoactive shape memory composite structures[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42568-42577. |
74 | CHEN Xi, HAN Shuyan, WU Weihui, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics[J]. Small, 2022, 18(36): e2106824. |
75 | SHEIKH A, ABOUREHAB M A S, KESHARWANI P. The clinical significance of 4D printing[J]. Drug Discovery Today, 2023, 28(1): 103391. |
76 | FU Peng, LI Haimei, GONG Jin, et al. 4D printing of polymers: Techniques, materials, and prospects[J]. Progress in Polymer Science, 2022, 126: 101506. |
77 | 辛忠. 材料添加剂化学[M]. 2版. 北京: 化学工业出版社, 2010. |
XIN Zhong. Material additive chemistry[M]. 2nd ed. Beijing: Chemical Industry Press, 2010. | |
78 | CHEN Ruoyang, QU Jiangang, ZHAO Qiangqiang, et al. Environmental impact on the light and perspiration stability of triazinylstilbene fluorescent brighteners on cotton fabrics[J]. Fibers and Polymers, 2014, 15(9): 1915-1920. |
79 | ZUO Xiaoling, MORLET-SAVARY, SCHMITT M, et al. Novel applications of fluorescent brighteners in aqueous visible-light photopolymerization: High performance water-based coating and LED-assisted hydrogel synthesis[J]. Polymer Chemistry, 2018, 9(28): 3952-3958. |
80 | 左晓玲, 吴翀, 黄安荣, 等. 可见光响应的荧光增白剂基多功能光引发体系[J]. 高等学校化学学报, 2020, 41(4): 811-820. |
ZUO Xiaoling, WU Chong, HUANG Anrong, et al. Visible-light-sensitive versatile fluorescent brightener-based photoinitiating systems[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 811-820. | |
81 | ZUO Xiaoling, WU Chong, YANG Le, et al. Fluorescent brighteners in thiol-acrylate polymerizations: Sunlight-cured coatings and LED-assisted multifuctional intelligent nanoparticles synthesis[J]. Progress in Organic Coatings, 2020, 148: 105829. |
82 | ZUO Xiaoling, ZHOU Ying, WANG Shaofan, et al. N-vinylcarbazole in thiol-ene click reactions: A versatile additive for sunlight-cured luminescent coatings and information encryption[J]. Progress in Organic Coatings, 2022, 168: 106878. |
83 | ZUO Xiaoling, WANG Shaofan, ZHENG Kai, et al. Fluorescent-brightener-mediated thiol-ene reactions under visible-light LED: A green and facile synthesis route to hyperbranched polymers and stimuli-sensitive nanoemulsions[J]. Dyes and Pigments, 2021, 189: 109253. |
84 | PARVIAINEN T A O, SALMELA P M, SIPPOLA R J, et al. Syntheses of thiophene and thiazole-based building blocks and their utilization in the syntheses of A-D-A type organic semiconducting materials with dithienosilolo central unit[J]. ACS Omega, 2022, 7(30): 26328-26335. |
85 | XIAN Kaihu, GENG Yanhou, YE Long. The rise of polythiophene photovoltaics[J]. Joule, 2022, 6(5): 941-944. |
86 | TANG Chao, CHEN Jianmei, ZHU Zhenghua, et al. Carbazole or carbazole-3-carbonitrile/pyridine host materials for efficient solution-processable blue phosphorescent and green TADF OLEDs[J]. Optical Materials, 2022, 132: 112573. |
87 | Tae Hoon HA, Jong-Kwan BIN, LEE Chil Won. Phenylpyridine and carbazole based host materials for highly efficient blue TADF OLEDs[J]. Organic Electronics, 2022, 102: 106450. |
88 | MALLICK T, KARMAKAR A, KAR M, et al. Carbazole-decorated fluorescent CdS quantum dots: A potential light-harvesting material[J]. Journal of Physics and Chemistry of Solids, 2022, 164: 110603. |
[1] | 张志伟, 杨伟鑫, 张隽佶. 长波长驱动光开关染料分子研究进展[J]. 化工进展, 2023, 42(8): 4058-4075. |
[2] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[3] | 田芳, 郭光, 丁克强, 杨凤, 刘翀, 王慧雅. 降解偶氮染料嗜盐菌的分离、降解特性及机制[J]. 化工进展, 2023, 42(4): 2115-2121. |
[4] | 多佳, 姚国栋, 王英霁, 曾旭, 金滨滨. 改性Au-TiO2光降解废水中诺氟沙星的影响[J]. 化工进展, 2023, 42(2): 624-630. |
[5] | 张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557. |
[6] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[7] | 王妍, 秦振平, 刘越, 张文海, 郭红霞. 环糊精原位改性MoS2管式陶瓷复合膜的制备及性能[J]. 化工进展, 2023, 42(10): 5373-5380. |
[8] | 许春树, 姚庆达, 梁永贤, 周华龙. 金属-有机框架材料结构设计及其对合成染料的吸附性能[J]. 化工进展, 2023, 42(10): 5322-5338. |
[9] | 刘海成, 孟无霜, 黄哲, 尤雨, 花瑞琪, 曹梦茹. WO3/BiOCl0.7I0.3光催化剂的制备及其光催化降解机理[J]. 化工进展, 2023, 42(1): 255-264. |
[10] | 范娇, 谢学辉, 秦艳, 陈小光, 方英荣, 杨珊珊, 赵江贵, 莫浩楠, 郑航蜜, 刘娜, 张庆云, 宋新山. 功能菌群DDMZ1共代谢脱色降解不同结构染料差异效应[J]. 化工进展, 2022, 41(8): 4449-4463. |
[11] | 江汝清, 余广炜, 王玉, 黎长江, 邢贞娇. 酸改性猪粪生物炭的制备及其对直接红23染料的吸附性能[J]. 化工进展, 2022, 41(12): 6489-6499. |
[12] | 陈毓, 王佳佳, 汤琳. 漂浮型氮化碳光催化剂CNx@mEP的制备及性能[J]. 化工进展, 2022, 41(12): 6477-6488. |
[13] | 赵文霞, 赵玉, 柴子茹, 张硕, 王世欣, 焦志杰. N2等离子体改性介孔TiO2的可见光催化性能及机理[J]. 化工进展, 2022, 41(11): 5820-5829. |
[14] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[15] | 罗菊香, 程德书, 李明春, 辛梅华. 室温可见光引发聚合诱导自组装制备P2VP-b-PSt纳米材料[J]. 化工进展, 2021, 40(5): 2676-2684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |