化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 73-83.DOI: 10.16085/j.issn.1000-6613.2023-0462
收稿日期:
2023-03-24
修回日期:
2023-06-28
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
李金科
作者简介:
李宁(1989—),男,硕士研究生,研究方向为乙烯裂解炉的燃烧系统与急冷系统。E-mail:292254364@qq.com。
LI Ning1,2(), LI Jinke2(), DONG Jinshan1
Received:
2023-03-24
Revised:
2023-06-28
Online:
2023-10-25
Published:
2023-11-30
Contact:
LI Jinke
摘要:
裂解炉用燃烧器是乙烯装置的关键装备,在稳定燃烧的同时又要满足特定的工艺要求和日益严苛的环保要求。近年来多孔介质燃烧技术的兴起,为乙烯裂解炉燃烧器带来了新的变革。本文利用CFD技术和热态试验方法设计开发出一种新型乙烯裂解炉用多孔介质燃烧器。通过数值分析研究双层多孔介质结构内的燃烧状态,其多孔介质区域上游为30PPI的Al2O3泡沫陶瓷,下游为10PPI的SiC泡沫陶瓷,研究发现在当量比φ=0.8、入口流速 u0=0.8m/s时更符合裂解炉内燃烧氛围。对裂解炉内传统底部燃烧器+多孔介质侧壁燃烧器进行联合仿真,仿真结果表明,炉膛内温度分布均匀且满足工艺要求和环保要求。制备2台多孔介质燃烧器联合底部燃烧器在热态试验炉上试烧,主要观察其火焰稳定性,实验结果表明,燃烧状态良好且NO x 排放更低。
中图分类号:
李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83.
LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83.
参数 | 上游多孔介质 | 下游多孔介质 |
---|---|---|
孔隙密度 | 30PPI | 10PPI |
孔隙率 | 80% | 80% |
材质 | Al2O3 | SiC |
厚度 | 10mm | 40mm |
最高可用温度 | 1900℃ | 1800℃ |
热导率(20~1000℃) | 5~30W/(m·℃) | 40~150 W/(m·℃) |
表1 多孔介质结构参数
参数 | 上游多孔介质 | 下游多孔介质 |
---|---|---|
孔隙密度 | 30PPI | 10PPI |
孔隙率 | 80% | 80% |
材质 | Al2O3 | SiC |
厚度 | 10mm | 40mm |
最高可用温度 | 1900℃ | 1800℃ |
热导率(20~1000℃) | 5~30W/(m·℃) | 40~150 W/(m·℃) |
1 | 王汉松,何细藕. 乙烯工业技术[M]. 北京:中国石化出版社, 2009: 134-140. |
WANG Songhan, HE Xi'ou. Ethylene industry technology[M]. Beijing: China Petrochemical Press, 2009: 134-140. | |
2 | 周善举, 王琪, 刘怡 . 等. 双碳背景下烧结烟气NO x 减排途径研究进展[C]//中国环境科学学会环境工程分会.中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(一).《工业建筑》杂志社有限公司, 2022. |
ZHOU Shanju, WANG Qi, LIU Yi, et al. Research progress of NO x emission reduction in sintering flue gasunder the background of double carbon[C]//Environmental Engineering Branch, Chinese Society of Environmental Sciences. Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society for Environmental Sciences——Innovation and Application of Environmental Engineering Technology. Industrial Building Magazine Co., LTD., 2022. | |
3 | 徐青, 郑章靖, 凌长明, 等. 氮氧化物污染现状和控制措施[J]. 安徽农业科学, 2010, 38(29): 16388-16391. |
XU Qing, ZHENG Zhangjing, LING Changming, et al. Status and controlling measures of nitrogen oxides pollution[J]. Journal of Anhui Agricultural Sciences, 2010, 38(29): 16388-16391. | |
4 | 凌荣华, 文军, 齐春松. 燃料分级燃烧技术的研究现况和应用前景[J]. 热力发电, 2003, 32(8): 6-8, 69. |
LING Ronghua, WEN Jun, QI Chunsong. Present situation of studying the technique to burn fuel in steps and application prospects thereof[J]. Thermal Power Generation, 2003, 32(8): 6-8, 69. | |
5 | 吴雪晴. 新型低NO x 燃气燃烧器的数值模拟与实验研究[D]. 长沙: 长沙理工大学, 2015. |
WU Xueqing. Numerical simulation and experimental study on a new type of low NOx gas burner[D]. Changsha: Changsha University of Science & Technology, 2015. | |
6 | 苏毅, 揭涛, 沈玲玲, 等. 低氮燃气燃烧技术及燃烧器设计进展[J]. 工业锅炉, 2016(4): 17-25. |
SU Yi, Tao JIE, SHEN Lingling, et al. An overview of low NO x gas combustion technology and burner design[J]. Industrial Boiler, 2016(4): 17-25. | |
7 | 宋少鹏, 卓建坤, 李娜, 等. 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36(24): 6849-6858, 6940. |
SONG Shaopeng, ZHUO Jiankun, LI Na, et al. Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation[J]. Proceedings of the CSEE, 2016, 36(24): 6849-6858, 6940. | |
8 | Kook-Young AHN, KIM Han-Seok, CHO Eun-Seong, et al. An experimental study on combustion processes and NO x emission characteristics of the air-staged burner[J]. KSME International Journal, 1999, 13(6): 477-486. |
9 | VARGA Augustin, Ján KIZEK, Ladislav LAZIĆ. Influence of flue gas recirculation on NO x and CO formation[J]. Strojarstvo, 2004, 46(1/2/3): 51-55. |
10 | SHINOMORI Kenichi, KATOU Kousuke, SHIMOKURI Daisuke, et al. NO x emission characteristics and aerodynamic structure of a self-recirculation type burner for small boilers[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2735-2742. |
11 | 杨伟杰. 烟气再循环燃气燃烧器的试验分析[J]. 工业锅炉, 2008(5): 23-25. |
YANG Weijie. Analysis of testing for gas-burner with flue gas recycle[J]. Industrial Boiler, 2008(5): 23-25. | |
12 | BALTASAR João, CARVALHO Maria G, COELHO Pedro, et al. Flue gas recirculation in a gas-fired laboratory furnace: Measurements and modelling[J]. Fuel, 1997, 76(10): 919-929. |
13 | 王恩宇. 气体燃料在渐变型多孔介质中的预混燃烧机理研究[D]. 杭州: 浙江大学, 2004. |
WANG Enyu. Study on premixed combustion mechanism of gas fuel in gradually changing porous media[D]. Hangzhou: Zhejiang University, 2004. | |
14 | KENNEDY Lawrence A, BINGUE Jacques P, SAVELIEV Alexei V, et al. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions[J]. Proceedings of the Combustion Institute, 2000, 28(1): 1431-1438. |
15 | BANERJEE Abhisek, SAVELIEV Alexei V. High temperature heat extraction from counterflow porous burner[J]. International Journal of Heat and Mass Transfer, 2018, 127: 436-443. |
16 | BUBNOVICH Valeri, TOLEDO Mario, Luis HENRÍQUEZ, et al. Flame stabilization between two beds of alumina balls in a porous burner[J]. Applied Thermal Engineering, 2010, 30(2/3): 92-95. |
17 | BAKRY Ayman, Ahmed AL-SALAYMEH, AL-MUHTASEB Ala’a H, et al. Adiabatic premixed combustion in a gaseous fuel porous inert media under high pressure and temperature: Novel flame stabilization technique[J]. Fuel, 2011, 90(2): 647-658. |
18 | GAO Huaibin, QU Zhiguo, TAO Wenquan, et al. Experimental investigation of methane/(Ar, N2, CO2)-air mixture combustion in a two-layer packed bed burner[J]. Experimental Thermal and Fluid Science, 2013, 44: 599-606. |
19 | QU Zhiguo, GAO Huaibin, FENG Xiangbo, et al. Premixed combustion in a porous burner with different fuels[J]. Combustion Science and Technology, 2015, 187(3): 489-504. |
20 | GAO H B, FENG X B, QU Z G. Combustion in a hybrid porous burner packed with alumina pellets and silicon carbide foams with a gap[J]. Journal of Energy Engineering, 2017, 143(5): 04017032.1-04017032.9. |
21 | 凌忠钱. 多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟[D]. 杭州: 浙江大学, 2008. |
LING Zhongqian. Experimental study and numerical simulation of hydrogen production by super adiabatic combustion and pyrolysis of hydrogen sulfide in porous media[D]. Hangzhou: Zhejiang University, 2008. | |
22 | 姜海. 多孔介质内预混气体燃烧的实验和数值研究[D]. 合肥: 中国科学技术大学, 2008. |
JIANG Hai. Experimental and numerical study on premixed gas combustion in porous media[D]. Hefei: University of Science and Technology of China, 2008. | |
23 | HASHEMI Seyed Mohammad, HASHEMI Seyed Abdolmehdi. Flame stability analysis of the premixed methane-air combustion in a two-layer porous media burner by numerical simulation[J]. Fuel, 2017, 202: 56-65. |
24 | HODA Shabani Nejad, GANDJALIKHAN NASSAB Seyyed Abdolreza, EBRAHIM Jahanshahi Javaran. Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners[J]. International Journal of Thermal Sciences, 2019, 145: 106024. |
25 | WANG Guanqing, TANG Pengbo, LI Yuan, et al. Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner[J]. Energy, 2019, 170: 1279-1288. |
26 | 吴雪松. 工业级多孔介质低氮燃烧器开发研究[D]. 杭州: 浙江大学, 2018. |
WU Xuesong. Development and research of industrial porous medium low nitrogen burner[D]. Hangzhou: Zhejiang University, 2018. | |
27 | WAKAO N, KAGUEI S. Heat and mass transfer in packed beds. Volume 1[J]. AIChE Journal, 1983, 1(2): 193-199. |
28 | LIU Yi, FAN Aiwu, YAO Hong, et al. Numerical investigation of filtration gas combustion in a mesoscale combustor filled with inert fibrous porous medium[J]. International Journal of Heat and Mass Transfer, 2015, 91: 18-26. |
29 | 杨世铭, 陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社, 1998. |
YANG Shiming, TAO Wenquan. Heat transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998. | |
30 | GAO H B, QU Z G, FENG X B, et al. Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115: 154-161. |
31 | DIETRICH Benjamin, SCHABEL Wilhelm, KIND Matthias, et al. Pressure drop measurements of ceramic sponges——Determining the hydraulic diameter[J]. Chemical Engineering Science, 2009, 64(16): 3633-3640. |
32 | WU Zhiyong, CALIOT Cyril, BAI Fengwu, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[3] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[4] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[5] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[6] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[7] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[8] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[9] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[10] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
[11] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[12] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[13] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[14] | 王光宇, 孟境辉, 张锴. 煤泥间歇微波干燥模拟及介电性质[J]. 化工进展, 2023, 42(4): 1779-1786. |
[15] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |