1 |
LIU Su, TONG Xin, LIU Sihua, et al. Multi-functional tannic acid (TA)-Ferric complex coating for forward osmosis membrane with enhanced micropollutant removal and antifouling property[J]. Journal of Membrane Science, 2021, 626: 119171.
|
2 |
SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis: Where are we now?[J]. Desalination, 2015, 356: 271-284.
|
3 |
GONZALES R R, ZHANG Lei, SASAKI Y, et al. Facile development of comprehensively fouling-resistant reduced polyketone-based thin film composite forward osmosis membrane for treatment of oily wastewater[J]. Journal of Membrane Science, 2021, 626: 119185.
|
4 |
GIAGNORIO M, CASASSO A, TIRAFERRI A. Environmental sustainability of forward osmosis: The role of draw solute and its management[J]. Environment International, 2021, 152: 106498.
|
5 |
LI Dan, ZHANG Xinyi, YAO Jianfeng, et al. Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination[J]. Chemical Communications, 2011, 47(6): 1710-1712.
|
6 |
RAZMJOU A, SIMON G P, WANG Huanting. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent[J]. Chemical Engineering Journal, 2013, 215/216: 913-920.
|
7 |
MATSUMOTO K, SAKIKAWA N, MIYATA T. Thermo-responsive gels that absorb moisture and ooze water[J]. Nature Communications, 2018, 9: 2315.
|
8 |
CAI Yufeng, SHEN Wenming, Siew Leng LOO, et al. Towards temperature driven forward osmosis desalination using semi-IPN hydrogels as reversible draw agents[J]. Water Research, 2013, 47(11): 3773-3781.
|
9 |
吴科霖, 骆华勇, 方茜, 等. 电场敏感水凝胶的制备及其正渗透脱盐性能研究[J]. 膜科学与技术, 2020, 40(6): 58-64.
|
|
WU Kelin, LUO Huayong, FANG Qian, et al. Preparation of electric-sensitive hydrogels and their performance in forward osmosis desalination[J]. Membrane Science and Technology, 2020, 40(6): 58-64.
|
10 |
LUO Huayong, WU Kelin, WANG Qin, et al. Forward osmosis with electro-responsive P(AMPS-co-AM) hydrogels as draw agents for desalination[J]. Journal of Membrane Science, 2020, 593: 117406.
|
11 |
马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177.
|
|
MA Li, LIU Xixi, ZHOU Shasha, et al. Preparation and performance test of starch-based grafted sodium acrylate composite super absorbent resin material[J]. Materials Reports, 2021, 35(22): 22172-22177.
|
12 |
XIE Hengxin, PAN Jiancong, WEI Biaowen, et al. Anti-fouling anion exchange membrane for electrodialysis fabricated by in-situ interpenetration of the ionomer to gradient cross-linked network of Ca-Na alginate[J]. Desalination, 2021, 505: 115005.
|
13 |
LENCINA M M S, CIOLINO A E, ANDREUCETTI N A, et al. Thermoresponsive hydrogels based on alginate-g-poly(N-isopropylacrylamide) copolymers obtained by low doses of gamma radiation[J]. European Polymer Journal, 2015, 68: 641-649.
|
14 |
杨晓芳, 魏铭, 孙力. 聚丙烯酰胺/碳量子点/氧化石墨烯复合水凝胶制备及其性能分析[J]. 化工进展, 2021, 40(S2): 301-308.
|
|
YANG Xiaofang, WEI Ming, SUN Li. Preparation and research of PAM/CQDs/GO composite hydrogel[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 301-308.
|
15 |
沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037.
|
|
SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037.
|
16 |
KOPAČ T, RUČIGAJ A, KRAJNC M. The mutual effect of the crosslinker and biopolymer concentration on the desired hydrogel properties[J]. International Journal of Biological Macromolecules, 2020, 159: 557-569.
|
17 |
李亚林, 刘蕾, 关明玥, 等. 纳米CaO2激发餐厨垃圾碳组分合成水凝胶及溶胀性能分析[J]. 化工进展, 2022, 41(11): 6120-6129.
|
|
LI Yalin, LIU Lei, GUAN Mingyue, et al. Synthesis and swelling property analysis of hydrogel based on carbon component of food waste excited by nano-sized calcium peroxide[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6120-6129.
|
18 |
许健, 韩宇晴, 王杰, 等. 聚丙烯酸镁/丙烯酸钠双交联水凝胶的制备及性能研究[J]. 现代化工, 2021, 41(4): 98-102.
|
|
XU Jian, HAN Yuqing, WANG Jie, et al. Synthesis and characterization of poly(magnesium acrylate-sodium acrylate) hydrogels with dually cross-linked structure[J]. Modern Chemical Industry, 2021, 41(4): 98-102.
|
19 |
张彦, 汪伟, 谢锐, 等.负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028.
|
|
ZHANG Yan, WANG Wei, XIE Rui, et al. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028.
|
20 |
王静, 刘红科, 刘平生, 等. 高强度水凝胶纳米复合材料的研究进展[J]. 材料导报, 2018, 32(1): 67-75.
|
|
WANG Jing, LIU Hongke, LIU Pingsheng, et al. Advances in hydrogel nanocomposites with high mechanical strength[J]. Materials Review, 2018, 32(1): 67-75.
|
21 |
MOZTAHIDA M, LEE Dae Sung. Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surface methodology[J]. Journal of Hazardous Materials, 2020, 400: 123314.
|
22 |
TSAI Fu-Hsuan, KITAMURA Y, KOKAWA M. Liquid-core alginate hydrogel beads loaded with functional compounds of radish by-products by reverse spherification: Optimization by response surface methodology[J]. International Journal of Biological Macromolecules, 2017, 96: 600-610.
|
23 |
ZHANG Keyuan, LI Fei, WU Yan, et al. Construction of ionic thermo-responsive PNIPAM/γ-PGA/PEG hydrogel as a draw agent for enhanced forward-osmosis desalination[J]. Desalination, 2020, 495: 114667.
|
24 |
SUN Guohui, ZHANG Xin, BAO Zixian, et al. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology[J]. Carbohydrate Polymers, 2018, 189: 280-288.
|
25 |
YUE Yiying, LUO Huiming, HAN Jingquan, et al. Assessing the effects of cellulose-inorganic nanofillers on thermo/pH-dual responsive hydrogels[J]. Applied Surface Science, 2020, 528: 146961.
|
26 |
RAZMJOU A, LIU Q, SIMON G P, et al. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy[J]. Environmental Science & Technology, 2013, 47(22): 13160-13166.
|
27 |
WANG Jichao, GAO Shanshan, TIAN Jiayu, et al. Recent developments and future challenges of hydrogels as draw solutes in forward osmosis process[J]. Water, 2020, 12(3): 692.
|