化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4414-4423.DOI: 10.16085/j.issn.1000-6613.2022-1762
奚永兰1,2,3,4(), 王成成1,2, 叶小梅2,3(), 刘洋1,2, 贾昭炎1,2, 曹春晖1,2, 韩挺2,3,4, 张应鹏2,3,4, 田雨5
收稿日期:
2022-09-21
修回日期:
2022-11-09
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
叶小梅
作者简介:
奚永兰(1986—),女,副研究员,硕士生导师,研究方向为农业废弃物资源化利用。E-mail:yonglanxi@jaas.ac.cn。
基金资助:
XI Yonglan1,2,3,4(), WANG Chengcheng1,2, YE Xiaomei2,3(), LIU Yang1,2, JIA Zhaoyan1,2, CAO Chunhui1,2, HAN Ting2,3,4, ZHANG Yingpeng2,3,4, TIAN Yu5
Received:
2022-09-21
Revised:
2022-11-09
Online:
2023-08-15
Published:
2023-09-19
Contact:
YE Xiaomei
摘要:
微纳米气泡(micro/nano bubbles,MNBs)因其广泛的应用领域及良好的应用前景而备受关注。在厌氧消化(AD)领域,MNBs具备的高气体转移效率、产生ROS、高zeta电位、高表面电荷以及固有的微曝气能力(空气或O2-MNBs)等特性,可以提高AD过程的性能和效率,改善限速步骤(水解和产甲烷),这为AD工艺的改进提供了新的方向。近年来,越来越多的研究将不同MNBs以不同方式用于AD中,这些研究主要集中于利用富有纳米气泡的纳米气泡水来提高AD反应器性能,而有关微气泡在AD中的应用研究相对较少。考虑到纳米气泡和微气泡都拥有改善AD的潜能,本文从MNBs的特性、制备方法和设备、其在AD中的研究现状和可能的作用机理方面开展综述,并探讨了未来可能的应用方向,旨在为进一步利用MNBs增强AD的研究提供参考。
中图分类号:
奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423.
XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423.
气泡类型 | 尺寸 | 比表面积 | 水中停留时间长 | 传质效率 |
---|---|---|---|---|
宏观气泡 | >100μm | 小 | 快速上升 | 传质效率低 |
微气泡 | 1~100μm | 较大 | 上升缓慢(停留几分钟) | 较高传质效率 |
纳米气泡 | <1μm | 大 | 上升最慢(停留数天) | 高传质效率 |
表1 微米气泡、纳米气泡和宏观气泡的特征差异
气泡类型 | 尺寸 | 比表面积 | 水中停留时间长 | 传质效率 |
---|---|---|---|---|
宏观气泡 | >100μm | 小 | 快速上升 | 传质效率低 |
微气泡 | 1~100μm | 较大 | 上升缓慢(停留几分钟) | 较高传质效率 |
纳米气泡 | <1μm | 大 | 上升最慢(停留数天) | 高传质效率 |
气体类型 | 反应式 | ΔGӨ′/kJ·mol-1 | 参考 文献 |
---|---|---|---|
空气或O2 | -2773.6 -2133.8 -1493.8 -853.9 | [ | |
H2或CO2 | -135.6 -95 | [ |
表2 空气、O2、H2和CO2-MNBs在AD中的可能反应
气体类型 | 反应式 | ΔGӨ′/kJ·mol-1 | 参考 文献 |
---|---|---|---|
空气或O2 | -2773.6 -2133.8 -1493.8 -853.9 | [ | |
H2或CO2 | -135.6 -95 | [ |
1 | CHEN Ye, CHENG Jay J, CREAMER Kurt S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. |
2 | MÉNDEZ-ACOSTA H O, PALACIOS-RUIZ B, ALCARAZ-GONZÁLEZ V, et al. A robust control scheme to improve the stability of anaerobic digestion processes[J]. Journal of Process Control, 2010, 20(4): 375-383. |
3 | MEEGODA Jay, LI Brian, PATEL Kush, et al. A review of the processes, parameters, and optimization of anaerobic digestion[J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2224. |
4 | VAN LIER J B, TILCHE A, AHRING B K, et al. New perspectives in anaerobic digestion[J]. Water Science and Technology, 2001, 43(1): 1-18. |
5 | Verónica CÓRDOBA, Mónica FERNÁNDEZ, SANTALLA Estela. The effect of different inoculums on anaerobic digestion of swine wastewater[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 115-122. |
6 | WARD Alastair J, HOBBS Phil J, HOLLIMAN Peter J, et al. Optimisation of the anaerobic digestion of agricultural resources[J]. Bioresource Technology, 2008, 99(17): 7928-7940. |
7 | 张文存, 王丽莉, 张国辉. 提高厌氧消化中产甲烷效能的技术进展[J]. 现代化工, 2021, 41(6): 41-45. |
ZHANG Wencun, WANG Lili, ZHANG Guohui. Review of technology development to improve methane yielding efficiency in anaerobic digestion[J]. Modern Chemical Industry, 2021, 41(6): 41-45. | |
8 | WANG Xuezhi, LEI Zhongfang, SHIMIZU Kazuya, et al. Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111074. |
9 | WANG Di. Characteristics of ultra-fine bubble water and its effects on anaerobic digestion of waste activated sludge[D]. Tokyo: University of Tsukuba, 2019. |
10 | ZHANG Cunsheng, SU Haijia, BAEYENS Jan, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392. |
11 | ARIF Sania, LIAQUAT Rabia, ADIL Manal. Applications of materials as additives in anaerobic digestion technology[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 354-366. |
12 | ROMERO-GÜIZA M S, VILA J, MATA-ALVAREZ J, et al. The role of additives on anaerobic digestion: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1486-1499. |
13 | CHUENCHART Wachiranon, KARKI Renisha, SHITANAKA Ty, et al. Nanobubble technology in anaerobic digestion: A review[J]. Bioresource Technology, 2021, 329: 124916. |
14 | TEMESGEN Tatek, Thi Thuy BUI, HAN Mooyoung, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review[J]. Advances in Colloid and Interface Science, 2017, 246: 40-51. |
15 | 原恺薇, 王兴亚. 纳米气泡制备和检测方法研究进展[J]. 净水技术, 2021, 40(2): 53-66. |
YUAN Kaiwei, WANG Xingya. Research progress on the preparation and determination of nanobubbles[J]. Water Purification Technology, 2021, 40(2): 53-66. | |
16 | 李婷竹, 郭冀峰, 王嘉琳, 等. 微纳米气泡及其在环境工程领域的应用[J]. 净水技术, 2021, 40(2): 88-92, 110. |
LI Tingzhu, GUO Jifeng, WANG Jialin, et al. Micro and nano bubbles and the applications in environmental engineering[J]. Water Purification Technology, 2021, 40(2): 88-92, 110. | |
17 | AHMED Ahmed, SHI Xiaonan, HUA Likun, et al. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth[J]. Journal of Agricultural and Food Chemistry, 2018, 66(20): 5117-5124. |
18 | RAHMAWATI Asri Ifani, SAPUTRA Rizki Nugraha, HIDAYATULLAH Arief, et al. Enhancement of Penaeus vannamei shrimp growth using nanobubble in indoor raceway pond[J]. Aquaculture and Fisheries, 2021, 6(3): 277-282. |
19 | HU Liming, XIA Zhiran. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials, 2018, 342: 446-453. |
20 | ZHOU Weiguang, LIU Ke, WANG Long, et al. The role of bulk micro-nanobubbles in reagent desorption and potential implication in flotation separation of highly hydrophobized minerals[J]. Ultrasonics Sonochemistry, 2020, 64: 104996. |
21 | GAO Zhonggao, KENNEDY Anne M, CHRISTENSEN Douglas A, et al. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy[J]. Ultrasonics, 2008, 48(4): 260-270. |
22 | PHAN Khanh Kim Thi, TRUONG Tuyen, WANG Yong, et al. Formation and stability of carbon dioxide nanobubbles for potential applications in food processing[J]. Food Engineering Reviews, 2021, 13(1): 3-14. |
23 | AL-MASHHADANI Mahmood K H, WILKINSON Stephen J, ZIMMERMAN William B. Carbon dioxide rich microbubble acceleration of biogas production in anaerobic digestion[J]. Chemical Engineering Science, 2016, 156: 24-35. |
24 | WANG Di, YANG Xiaojing, TIAN Caixing, et al. Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge[J]. Bioresource Technology, 2019, 273: 63-69. |
25 | 代朝猛, 张峻博, 段艳平, 等. 微纳米气泡特性及在环境水体修复中的应用[J]. 同济大学学报(自然科学版), 2022, 50(3): 431-438. |
DAI Chaomeng, ZHANG Junbo, DUAN Yanping, et al. Characteristics of micro-nano bubbles and their application in environmental water remediation[J]. Journal of Tongji University (Natural Science), 2022, 50(3): 431-438. | |
26 | NIRMALKAR N, PACEK A W, BARIGOU M. On the existence and stability of bulk nanobubbles[J]. Langmuir, 2018, 34(37): 10964-10973. |
27 | USHIKUBO Fernanda Yumi, FURUKAWA Takuro, NAKAGAWA Ryou, et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361(1/2/3): 31-37. |
28 | 王小平, 秦佳圆. 微纳米气泡水处理技术的研究综述[J]. 应用化工, 2022, 51(8): 2464-2469. |
WANG Xiaoping, QIN Jiayuan. Review of micro-nano bubble in water treatment[J]. Applied Chemical Industry, 2022, 51(8): 2464-2469. | |
29 | ZHANG Mengdi, QIU Liping, LIU Guicai. Basic characteristics and application of micro-nano bubbles in water treatment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 510(4): 042050. |
30 | LI Hengzhen, HU Liming, SONG Dejun, et al. Characteristics of micro-nano bubbles and potential application in groundwater bioremediation[J]. Water Environment Research, 2014, 86(9): 844-851. |
31 | SAKR Marwa, MOHAMED Mohamed M, MARAQA Munjed A, et al. A critical review of the recent developments in micro-nano bubbles applications for domestic and industrial wastewater treatment[J]. Alexandria Engineering Journal, 2022, 61(8): 6591-6612. |
32 | KHALED ABDELLA AHMED Ahmed, SUN Cuizhen, HUA Likun, et al. Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: Effects of ionic strength, natural organic matters, and surfactants[J]. Environmental Engineering Science, 2018, 35(7): 720-727. |
33 | ATKINSON Ariel J, APUL Onur G, SCHNEIDER Orren, et al. Nanobubble technologies offer opportunities to improve water treatment[J]. Accounts of Chemical Research, 2019, 52(5): 1196-1205. |
34 | PARMAR Rajeev, MAJUMDER Subrata Kumar. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report[J]. Chemical Engineering and Processing: Process Intensification, 2013, 64: 79-97. |
35 | XIAO Zhengguo, AFTAB Tallal BIN, LI Dengxin. Applications of micro-nano bubble technology in environmental pollution control[J]. Micro & Nano Letters, 2019, 14(7): 782-787. |
36 | Tao LYU, WU Shubiao, MORTIMER Robert J G, et al. Nanobubble technology in environmental engineering: Revolutionization potential and challenges[J]. Environmental Science & Technology, 2019, 53(13): 7175-7176. |
37 | 熊永磊, 杨小丽, 宋海亮. 微纳米气泡在水处理中的应用及其发生装置研究[J]. 环境工程, 2016, 34(6): 23-27. |
XIONG Yonglei, YANG Xiaoli, SONG Hailiang. Review on application of micro-nano bubble in water treatment and its generator[J]. Environmental Engineering, 2016, 34(6): 23-27. | |
38 | TAKAHASHI Masayoshi, CHIBA Kaneo, LI Pan. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343-1347. |
39 | LIU Shu, OSHITA Seiichi, KAWABATA Saneyuki, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295-11302. |
40 | 张睿毅, 陈岚, 葛广路. 体相纳米气泡的消除与尺寸调控研究进展[J]. 环境工程技术学报, 2022, 12(4): 1310-1316. |
ZHANG Ruiyi, CHEN Lan, GE Guanglu. Research progress on elimination and size control of bulk nanobubbles[J]. Journal of Environmental Engineering Technology, 2022, 12(4): 1310-1316. | |
41 | OHNARI Hirofumi. Swirling type micro-bubble generating system: US20070267763[P]. 2007-11-22. |
42 | 邓超, 杨丽, 陈海军, 等. 微纳米气泡发生装置及其应用的研究进展[J]. 石油化工, 2014, 43(10): 1206-1213. |
DENG Chao, YANG Li, CHEN Haijun, et al. Progresses in research and application of micro-nano bubble generating device[J]. Petrochemical Technology, 2014, 43(10): 1206-1213. | |
43 | WU Chendi, NESSET Kirsten, MASLIYAH Jacob, et al. Generation and characterization of submicron size bubbles[J]. Advances in Colloid and Interface Science, 2012, 179/180/181/182: 123-132. |
44 | AGARWAL Ashutosh, Wun Jern NG, LIU Yu. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175-1180. |
45 | LI Ting, CUI Zhao, SUN Jing, et al. Generation of bulk nanobubbles by self-developed venturi-type circulation hydrodynamic cavitation device[J]. Langmuir, 2021, 37(44): 12952-12960. |
46 | SUSLICK Kenneth S. The chemical effects of ultrasound[J]. Scientific American, 1989, 260(2): 80-86. |
47 | YASUDA Keiji, MATSUSHIMA Hodaka, ASAKURA Yoshiyuki. Generation and reduction of bulk nanobubbles by ultrasonic irradiation[J]. Chemical Engineering Science, 2019, 195: 455-461. |
48 | 李辉, 李干禄, 何峰, 等. 微气泡耦合生物反应器的研究进展[J]. 化工进展, 2020, 39(12): 4758-4765. |
LI Hui, LI Ganlu, HE Feng, et al. Research progress of microbubble coupled bioreactor[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4758-4765. | |
49 | ZIMMERMAN William B, HEWAKANDAMBY Buddhika N, Václav TESAŘ, et al. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation[J]. Food and Bioproducts Processing, 2009, 87(3): 215-227. |
50 | ZHANG Fanfan, SUN Lijuan, YANG Haichang, et al. Recent advances for understanding the role of nanobubbles in particles flotation[J]. Advances in Colloid and Interface Science, 2021, 291: 102403. |
51 | JADHAV Ananda J, FERRARO Gianluca, BARIGOU Mostafa. Generation of bulk nanobubbles using a high-shear rotor-stator device[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8597-8606. |
52 | AHMED Ahmed Khaled Abdella, SUN Cuizhen, HUA Likun, et al. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure[J]. Chemosphere, 2018, 203: 327-335. |
53 | REN Hang, EDWARDS Martin A, WANG Yufei, et al. Electrochemically controlled nucleation of single CO2 nanobubbles via formate oxidation at Pt nanoelectrodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(4): 1291-1296. |
54 | JADHAV Ananda J, BARIGOU Mostafa. Bulk nanobubbles or not nanobubbles: That is the question[J]. Langmuir, 2020, 36(7): 1699-1708. |
55 | NGUYEN Duc, KHANAL Samir Kumar. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process[J]. Biotechnology Advances, 2018, 36(7): 1971-1983. |
56 | TARTAKOVSKY B, MEHTA P, J-S BOURQUE, et al. Electrolysis-enhanced anaerobic digestion of wastewater[J]. Bioresource Technology, 2011, 102(10): 5685-5691. |
57 | NUGROHO Wahyunanto. Application of CO₂ microbubble to enhance methane production in anaerobic digestion of food waste[D]. Sheffield, Yorkshire and the Humber, UK: University of Sheffield, 2021. |
58 | NOCK William J, Alba SERNA-MAZA, HEAVEN Sonia, et al. Evaluation of microporous hollow fibre membranes for mass transfer of H2 into anaerobic digesters for biomethanization[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(8): 2693-2701. |
59 | LIU Ye, WANG Ying, WEN Xinlei, et al. Enhanced bioconversion of hydrogen and carbon dioxide to methane using a micro-nano sparger system: Mass balance and energy consumption[J]. RSC Advances, 2018, 8(47): 26488-26496. |
60 | JENSEN Mads Bjørnkjær, KOFOED Michael Vedel Wegener, FISCHER Keelan, et al. Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation[J]. Applied Energy, 2018, 222: 840-846. |
61 | 苏东方, 李叶青, 罗森, 等. 合成气生物甲烷化影响因素研究[J]. 中国沼气, 2017, 35(2): 68-71. |
SU Dongfang, LI Yeqing, LUO Sen, et al. The influence factors of biomethanation of synthesized gas[J]. China Biogas, 2017, 35(2): 68-71. | |
62 | SIKARWAR Vineet Singh, Michael POHOŘELÝ, MEERS Erik, et al. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization[J]. Fuel, 2021, 294: 120533. |
63 | WANG Xuezhi, YUAN Tian, LEI Zhongfang, et al. Supplementation of O2-containing gas nanobubble water to enhance methane production from anaerobic digestion of cellulose[J]. Chemical Engineering Journal, 2020, 398: 125652. |
64 | YANG Xiaojing, NIE Jingmin, WANG Di, et al. Enhanced hydrolysis of waste activated sludge for methane production via anaerobic digestion under N2-nanobubble water addition[J]. Science of the Total Environment, 2019, 693: 133524. |
65 | WANG Xuezhi. Effects of nano-bubbles on biogas production from lignocellulosic biomass and its mechanism[D]. Tokyo: University of Tsukuba, 2020. |
66 | YANG Xiaojing, NIE Jingmin, WEI Yu, et al. Simultaneous enhancement on lignin degradation and methane production from anaerobic co-digestion of waste activated sludge and alkaline lignin supplemented with N2-nanobubble water[J]. Bioresource Technology Reports, 2020, 11: 100470. |
67 | Thi Hang HO, YANG Xiaojing, NIE Jingming, et al. Effect of nanobubble water on anaerobic methane production from lignin[J]. Research on Chemical Intermediates, 2020, 46(11): 4767-4780. |
68 | WANG Xuezhi, LEI Z, SHIMIZU K, et al. Improved methane production from corn straw using anaerobically digested sludge pre-augmented by nanobubble water[J]. Bioresource Technology, 2020, 311: 123479. |
69 | FAN Yujie, LEI Zhongfang, YANG Xiaojing, et al. Effect of nano-bubble water on high solid anaerobic digestion of pig manure: Focus on digestion stability, methanogenesis performance and related mechanisms[J]. Bioresource Technology, 2020, 315: 123793. |
70 | FAN Yujie, YANG Xiaojing, LEI Zhongfang, et al. Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: Buffering capacity promotion and methane production enhancement[J]. Bioresource Technology, 2021, 333: 125131. |
71 | ZHAO Jing, LI Yu, DONG Renjie. Recent progress towards in situ biogas upgrading technologies[J]. Science of the Total Environment, 2021, 800: 149667. |
72 | GILMOUR D J, ZIMMERMAN W B. Microbubble intensification of bioprocessing[J]. Advances in Microbial Physiology, 2020, 77: 1-35. |
73 | WANG Xuezhi, YUAN Tian, GUO Zitao, et al. Enhanced hydrolysis and acidification of cellulose at high loading for methane production via anaerobic digestion supplemented with high mobility nanobubble water[J]. Bioresource Technology, 2020, 297: 122499. |
74 | ZHU Rong, ZHANG Yafeng, ZOU Hua, et al. The effects of micro-aeration on semi-continued anaerobic digestion of corn straw with increasing organic loading rates[J]. Renewable Energy, 2022, 195: 1194-1201. |
75 | ZHANG Siying, XIAO Mengyao, LIANG Chengyu, et al. Multivariate insights into enhanced biogas production in thermophilic dry anaerobic co-digestion of food waste with kitchen waste or garden waste: Process properties, microbial communities and metagenomic analyses[J]. Bioresource Technology, 2022, 361: 127684. |
76 | FAN Yujie, YANG Xiaojing, LEI Zhongfang, et al. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation[J]. Bioresource Technology, 2021, 326: 124782. |
77 | HOU Tingting, ZHAO Jiamin, LEI Zhongfang, et al. Addition of air-nanobubble water to mitigate the inhibition of high salinity on co-production of hydrogen and methane from two-stage anaerobic digestion of food waste[J]. Journal of Cleaner Production, 2021, 314: 127942. |
[1] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[2] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[3] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[4] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[5] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[6] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[7] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[8] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[9] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[10] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
[11] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[12] | 侯千姿, 郭心怡, 焦子悦, 费强. 好氧性嗜甲烷菌生物能供给与调控的研究进展[J]. 化工进展, 2023, 42(1): 86-93. |
[13] | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535. |
[14] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[15] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |