化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4167-4181.DOI: 10.16085/j.issn.1000-6613.2022-1771
收稿日期:
2022-09-22
修回日期:
2023-01-15
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
焦波
作者简介:
卜治丞(2000—),男,硕士研究生,研究方向为脉动热管强化传热。E-mail:21226020@stu.sdjtu.edu.cn。
基金资助:
BU Zhicheng(), JIAO Bo(), LIN Haihua, SUN Hongyuan
Received:
2022-09-22
Revised:
2023-01-15
Online:
2023-08-15
Published:
2023-09-19
Contact:
JIAO Bo
摘要:
脉动热管利用工质的潜热和显热实现高效的热传递,过程中伴随气液塞强烈的往复振荡,流动与传热现象极其复杂。利用计算流体力学模拟可以获得管内气液界面形态、流型转换及振荡压降等重要信息。本文对公开发表的相关研究进行了综述,介绍各个模型的主要公式、数值模拟的求解方法、优势和现有的局限性,总结现有模拟研究开展的主要工作和结论。通过分析发现了目前存在的问题:相变模型中蒸发、冷凝系数的确定仍未有明确的理论依据;二维模型中管径的确定方法还未形成共识;将气-液-固三相流动的颗粒流体简化为均质流体。基于上述问题,本文提出了利用计算流体力学模拟脉动热管后续的研究方向。
中图分类号:
卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181.
BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181.
年份 | 几何 | 两相流模型 | 相变模型 | 黏性模型 | 内径 | 弯折数 | 工质 | 倾角 | 充液率 | 蒸发段边界条件 | 验证 |
---|---|---|---|---|---|---|---|---|---|---|---|
2009[ | 3D | VOF | Lee(βv=βc =10) | k-ε | 1.5mm | 3 | 去离子水 | 90° | 0.645 | 80W, 100W, 120W | & |
2015[ | 2D | VOF | Lee(βv=βc =0.1) | k-ε | 2mm | 1 | 水 | 90° | 0.4, 0.5, 0.6 | 10~40W | & |
2016[ | 2D | VOF | Lee (βv=βc=0.1) | k-ε | 3.8mm | 1 | 去离子水 | 90° | 0.3~0.6 | 5~40W | * |
2016[ | 2D | VOF | Lee(βv=βc=0.1) | — | 2mm | 5 | R508B | 90° | 0.3, 0.5, 0.7 | 20~120W | — |
2018[ | 3D | VOF | Lee(βv=βc=0.1) | k-ε | 2mm | 1 | 去离子水 | Le、Lc:θ=0°,La:θ=5~45° | 0.5 | 10~40W | — |
2018[ | 3D | VOF | Lee(βv=0.1, βc =1) | Standard k-ε | 2mm | 4 | CTAC 水溶液 | 90° | 0.35, 0.5, 0.65 | 20~50W | — |
2019[ | 3D | VOF | Lee (βv=βc=0.1) | k-ε | 4mm | 1 | CTAC 水溶液 | 90° | — | 10~40W | — |
2019[ | 2D | VOF | Lee (βv=βc=0.1) | — | 1.5mm | 1 | MEPCM悬浮液 | 90° | 0.6 | 60W, 80W, 100W | & |
2020[ | 2D | VOF | Lee(βv=βc=0.1) | Laminar | 2mm | 3 | 液氮 | — | 0.5, 0.6, 0.7 | 85~110K | — |
2020[ | 2D | VOF | Lee(βv=βc=0.1) | RNG k-ε | 3mm | 1 | 去离子水 | 90° | 0.5 | 18~97.11W | & |
2020[ | 3D | VOF | Lee (βv=βc=0.1) | k-ε | 4mm | 1 | 去离子水 | 90° | 0.5 | 10~40W | — |
2020[ | 2D | VOF | Lee(βv=5, βc =500) | Laminar | 2.3mm | 1 | 液氢 | 90° | 0.8 | 0.27~1W | & |
2021[ | 3D | VOF | Lee(βv=βc·ρl /ρv) | — | 2mm | 7, 16, 23 | 水 | 90° | 0.5 | 353.15K | & |
2012[ | 3D | VOF | Lee | k-ε | 2mm×2mm 矩形通道 | 5 | 水 | 90° | 0.3~0.7 | 80~140W | — |
2013[ | 2D | Mixture/VOF | Lee | Laminar | 0.5mm, 0.8mm,1.3mm, 1.8mm | 4 | 水 | 90° | 0.5 | 8~72W | * |
2015[ | 2D | VOF | Lee | — | 0.5mm | 3 | 液氦 | 90° | 0.5 | 0.2W | — |
2016[ | 3D | VOF | Lee | — | 2mm | 1 | 水、甲醇、乙醇 | 90° | 0.6 | 20W, 40W, 60W | * |
2018[ | 2D | VOF | Lee | — | 0.5mm | 6 | 液氮 | 0~90° | 0.3~0.7 | 25~325W | — |
2019[ | 2D | VOF | Lee | Realizable k-ε | 2mm | 2 | 水 | 90° | 0.5 | 5×104W/m2 | — |
2019[ | 2D | VOF | Lee | — | 0.5mm×2mm 矩形通道 | 6 | 银纳米流体 | 90° | 0.3~0.7 | 20~120W | — |
2020[ | 3D | VOF | Lee | Realizable k-ε | 1.85mm | 8 | R123 | 90° | 0.5, 0.6 | 323.15K | * |
2021[ | 2D | VOF | Lee | Realizable k-ε | 2mm | 2 | 水 | 90° | 0.5 | 15W | * |
2021[ | 3D | Mixture | Lee | Standard k-ε | — | — | 水 | — | 0.5 | (5×103~1.5×104 )W/m2 | — |
2014[ | 3D | VOF | — | Laminar | 2mm | 2 | 水、甲醇、乙醇、丙酮、 水-甲醇、水-乙醇、水-丙酮 | 90° | 0.5 | 8~80W | * |
2016[ | 3D | VOF | — | Laminar | 1.8mm | 5 | 水、乙醇 | — | 0.35~0.75 | 10~120W | & |
2016[ | 2D | VOF | — | k-ε | 3mm | 1 | 水 | 90° | 0.6 | 250W | * |
2017[ | 3D | VOF | — | k-ε | 2mm, 3mm | 2 | 甲醇、水-甲醇、水-乙醇 | — | 0.5 | 10~70W | — |
2021[ | 2D | VOF | — | Laminar | 2mm | 1 | 水 | 90° | 0.6 | 3~9W | — |
2021[ | 3D | VOF | — | — | 2mm | 1 | 乙烷 | 90° | 0.3 | 5~50W | — |
2017[ | 3D | VOF | Hu (η=0.005) | — | 1mm×1mm 矩形通道 | 1 | R245fa | 90° | 0.7, 0.8 | 9~21W | * |
2018[ | 2D | VOF | Hu | Realizable k-ε | 3mm×1.7mm 矩形通道 | 6 | 水 | 90° | 0.4~0.7 | 5000~31300W/m2 | & |
2018[ | 2D | VOF | Hu | Realizable k-ε | 2mm | 1 | 水 | 45°、90° | 0.4~0.7 | 20~80W | & |
2020[ | 2D | VOF | Kafeel(βv=βc =0.1) | — | 2mm | 5, 10, 15, 20 | 乙醇 | 0°, 90° | 0.5 | 1000W/m2 | & |
2020[ | 2D | VOF | Xu | k-ε | 4mm | 1 | 去离子水 | 90° | 0.4, 0.6 | 18~86.6W | & |
2021[ | 2D | VOF | Lee(βv=0.5, βc=100) Kafeel(βv=0.5, βc=100) Xu (βv=0.1, βc =0.1) Tanasawa (η=1) | k-ω | 1.5mm | 2 | 乙醇 | 90° | 0.526 | 75W, 100W | * |
表1 CFD模拟文献总结
年份 | 几何 | 两相流模型 | 相变模型 | 黏性模型 | 内径 | 弯折数 | 工质 | 倾角 | 充液率 | 蒸发段边界条件 | 验证 |
---|---|---|---|---|---|---|---|---|---|---|---|
2009[ | 3D | VOF | Lee(βv=βc =10) | k-ε | 1.5mm | 3 | 去离子水 | 90° | 0.645 | 80W, 100W, 120W | & |
2015[ | 2D | VOF | Lee(βv=βc =0.1) | k-ε | 2mm | 1 | 水 | 90° | 0.4, 0.5, 0.6 | 10~40W | & |
2016[ | 2D | VOF | Lee (βv=βc=0.1) | k-ε | 3.8mm | 1 | 去离子水 | 90° | 0.3~0.6 | 5~40W | * |
2016[ | 2D | VOF | Lee(βv=βc=0.1) | — | 2mm | 5 | R508B | 90° | 0.3, 0.5, 0.7 | 20~120W | — |
2018[ | 3D | VOF | Lee(βv=βc=0.1) | k-ε | 2mm | 1 | 去离子水 | Le、Lc:θ=0°,La:θ=5~45° | 0.5 | 10~40W | — |
2018[ | 3D | VOF | Lee(βv=0.1, βc =1) | Standard k-ε | 2mm | 4 | CTAC 水溶液 | 90° | 0.35, 0.5, 0.65 | 20~50W | — |
2019[ | 3D | VOF | Lee (βv=βc=0.1) | k-ε | 4mm | 1 | CTAC 水溶液 | 90° | — | 10~40W | — |
2019[ | 2D | VOF | Lee (βv=βc=0.1) | — | 1.5mm | 1 | MEPCM悬浮液 | 90° | 0.6 | 60W, 80W, 100W | & |
2020[ | 2D | VOF | Lee(βv=βc=0.1) | Laminar | 2mm | 3 | 液氮 | — | 0.5, 0.6, 0.7 | 85~110K | — |
2020[ | 2D | VOF | Lee(βv=βc=0.1) | RNG k-ε | 3mm | 1 | 去离子水 | 90° | 0.5 | 18~97.11W | & |
2020[ | 3D | VOF | Lee (βv=βc=0.1) | k-ε | 4mm | 1 | 去离子水 | 90° | 0.5 | 10~40W | — |
2020[ | 2D | VOF | Lee(βv=5, βc =500) | Laminar | 2.3mm | 1 | 液氢 | 90° | 0.8 | 0.27~1W | & |
2021[ | 3D | VOF | Lee(βv=βc·ρl /ρv) | — | 2mm | 7, 16, 23 | 水 | 90° | 0.5 | 353.15K | & |
2012[ | 3D | VOF | Lee | k-ε | 2mm×2mm 矩形通道 | 5 | 水 | 90° | 0.3~0.7 | 80~140W | — |
2013[ | 2D | Mixture/VOF | Lee | Laminar | 0.5mm, 0.8mm,1.3mm, 1.8mm | 4 | 水 | 90° | 0.5 | 8~72W | * |
2015[ | 2D | VOF | Lee | — | 0.5mm | 3 | 液氦 | 90° | 0.5 | 0.2W | — |
2016[ | 3D | VOF | Lee | — | 2mm | 1 | 水、甲醇、乙醇 | 90° | 0.6 | 20W, 40W, 60W | * |
2018[ | 2D | VOF | Lee | — | 0.5mm | 6 | 液氮 | 0~90° | 0.3~0.7 | 25~325W | — |
2019[ | 2D | VOF | Lee | Realizable k-ε | 2mm | 2 | 水 | 90° | 0.5 | 5×104W/m2 | — |
2019[ | 2D | VOF | Lee | — | 0.5mm×2mm 矩形通道 | 6 | 银纳米流体 | 90° | 0.3~0.7 | 20~120W | — |
2020[ | 3D | VOF | Lee | Realizable k-ε | 1.85mm | 8 | R123 | 90° | 0.5, 0.6 | 323.15K | * |
2021[ | 2D | VOF | Lee | Realizable k-ε | 2mm | 2 | 水 | 90° | 0.5 | 15W | * |
2021[ | 3D | Mixture | Lee | Standard k-ε | — | — | 水 | — | 0.5 | (5×103~1.5×104 )W/m2 | — |
2014[ | 3D | VOF | — | Laminar | 2mm | 2 | 水、甲醇、乙醇、丙酮、 水-甲醇、水-乙醇、水-丙酮 | 90° | 0.5 | 8~80W | * |
2016[ | 3D | VOF | — | Laminar | 1.8mm | 5 | 水、乙醇 | — | 0.35~0.75 | 10~120W | & |
2016[ | 2D | VOF | — | k-ε | 3mm | 1 | 水 | 90° | 0.6 | 250W | * |
2017[ | 3D | VOF | — | k-ε | 2mm, 3mm | 2 | 甲醇、水-甲醇、水-乙醇 | — | 0.5 | 10~70W | — |
2021[ | 2D | VOF | — | Laminar | 2mm | 1 | 水 | 90° | 0.6 | 3~9W | — |
2021[ | 3D | VOF | — | — | 2mm | 1 | 乙烷 | 90° | 0.3 | 5~50W | — |
2017[ | 3D | VOF | Hu (η=0.005) | — | 1mm×1mm 矩形通道 | 1 | R245fa | 90° | 0.7, 0.8 | 9~21W | * |
2018[ | 2D | VOF | Hu | Realizable k-ε | 3mm×1.7mm 矩形通道 | 6 | 水 | 90° | 0.4~0.7 | 5000~31300W/m2 | & |
2018[ | 2D | VOF | Hu | Realizable k-ε | 2mm | 1 | 水 | 45°、90° | 0.4~0.7 | 20~80W | & |
2020[ | 2D | VOF | Kafeel(βv=βc =0.1) | — | 2mm | 5, 10, 15, 20 | 乙醇 | 0°, 90° | 0.5 | 1000W/m2 | & |
2020[ | 2D | VOF | Xu | k-ε | 4mm | 1 | 去离子水 | 90° | 0.4, 0.6 | 18~86.6W | & |
2021[ | 2D | VOF | Lee(βv=0.5, βc=100) Kafeel(βv=0.5, βc=100) Xu (βv=0.1, βc =0.1) Tanasawa (η=1) | k-ω | 1.5mm | 2 | 乙醇 | 90° | 0.526 | 75W, 100W | * |
项目 | Lee模型[ | Tanasawa模型[ | 薄液膜改进模型[ |
---|---|---|---|
内容 | 界面面积密度: 令 | 界面面积密度: 认为气体密度相对于液体密度可以忽略: | 界面面积密度: |
源项 公式 | Kafeel优化[ Xu优化[ | 假设贴壁网格 Δx为贴壁网格垂直壁面方向的高度。 薄液膜处蒸发: 薄液膜处冷凝: |
表2 CFD模拟PHP的相变模型
项目 | Lee模型[ | Tanasawa模型[ | 薄液膜改进模型[ |
---|---|---|---|
内容 | 界面面积密度: 令 | 界面面积密度: 认为气体密度相对于液体密度可以忽略: | 界面面积密度: |
源项 公式 | Kafeel优化[ Xu优化[ | 假设贴壁网格 Δx为贴壁网格垂直壁面方向的高度。 薄液膜处蒸发: 薄液膜处冷凝: |
模型 | 二维 | 三维 |
---|---|---|
弯液面区域工质 受力示意图 | ||
重力 | ||
表面张力 | ||
重力/表面张力 | ||
相似原理分析 | 保持二者G/Fs比例相同,σ相同时⇒ |
表3 直径在二维和三维模拟中的对比(以圆管为例)
模型 | 二维 | 三维 |
---|---|---|
弯液面区域工质 受力示意图 | ||
重力 | ||
表面张力 | ||
重力/表面张力 | ||
相似原理分析 | 保持二者G/Fs比例相同,σ相同时⇒ |
1 | AKACHI Hisateru. Structure of a heat pipe: US4921041[P]. 1990-05-01. |
2 | 屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41. |
QU Jian. Oscillating heat pipes: State of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41. | |
3 | 权力. 板式脉动热管传热特性实验研究[D]. 北京: 北京交通大学, 2009. |
QUAN Li. Experimental study on heat transfer characteristic of plate pulsating heat pipe[D]. Beijing: Beijing Jiaotong University, 2009. | |
4 | HAN Xiaohong, WANG Xuehui, ZHENG Haoce, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
5 | KHANDEKAR Sameer, GROLL Manfred. An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes[J]. International Journal of Thermal Sciences, 2004, 43(1): 13-20. |
6 | DAVE Chirag, DANDALE Prajwal, SHRIVASTAVA Kushagra, et al. A review on pulsating heat pipes: Latest research, applications and future scope[J]. Journal of Thermal Engineering, 2021, 7(3): 387-408. |
7 | SHAFII Mohammad B, FAGHRI Amir, ZHANG Yuwen. Thermal modeling of unlooped and looped pulsating heat pipes[J]. Journal of Heat Transfer, 2001, 123(6): 1159-1172. |
8 | SENJAYA Raffles, INOUE Takayoshi. Oscillating heat pipe simulation considering dryout phenomena[J]. Heat and Mass Transfer, 2014, 50(10): 1429-1441. |
9 | Joohan BAE, LEE Sang yong, KIM Sung Jin. Numerical investigation of effect of film dynamics on fluid motion and thermal performance in pulsating heat pipes[J]. Energy Conversion and Management, 2017, 151: 296-310. |
10 | MAMELI Mauro, BESAGNI Giorgio, BANSAL Pradeep K, et al. Innovations in pulsating heat pipes: From origins to future perspectives[J]. Applied Thermal Engineering, 2022, 203: 117921. |
11 | LIU X D, HAO Y L. Numerical simulation of vapor-liquid two-phase flow in a closed loop oscillating heat pipe[C]//Florida: Proceedings of ASME 2009 International Mechanical Engineering Congress and Exposition, 2010: 609-617. |
12 | AYEL Vincent, SLOBODENIUK Maksym, BERTOSSI Rémi, et al. Flat plate pulsating heat pipes: A review on the thermohydraulic principles, thermal performances and open issues[J]. Applied Thermal Engineering, 2021, 197: 117200. |
13 | KIM Wookyoung, KIM Sung Jin. Fundamental issues and technical problems about pulsating heat pipes[J]. Journal of Heat Transfer, 2021, 143(10): 100803. |
14 | XU Yanyan, XUE Yanqin, QI Hong, et al. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110995. |
15 | WANG Jiansheng, MA He, ZHU Qiang. Effects of the evaporator and condenser length on the performance of pulsating heat pipes[J]. Applied Thermal Engineering, 2015, 91: 1018-1025. |
16 | WANG Jiansheng, MA He, ZHU Qiang, et al. Numerical and experimental investigation of pulsating heat pipes with corrugated configuration[J]. Applied Thermal Engineering, 2016, 102: 158-166. |
17 | 马文统, 陈曦, 曹广亮, 等. 中低温脉动热管传热性能的模拟研究[J]. 真空与低温, 2016, 22(5): 282-285, 300. |
MA Wentong, CHEN Xi, CAO Guangliang, et al. Numerical simulation study of the heat-transfer preformance of pulsating heat pipe at medium and low temperature[J]. Vacuum and Cryogenics, 2016, 22(5): 282-285, 300. | |
18 | WANG Jiansheng, BAI Xueyu. The features of CLPHP with partial horizontal structure[J]. Applied Thermal Engineering, 2018, 133: 682-689. |
19 | BASTAKOTI DURGA, ZHANG H N, CAI W H, et al. Numerical analysis of effects of surface tension and viscosity on 3 dimensional pulsating heat pipe[C]. Montreal: Proceedings of ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, 2018. |
20 | WANG Jiansheng, XIE Jinyuan, LIU Xueling. Investigation on the performance of closed-loop pulsating heat pipe with surfactant[J]. Applied Thermal Engineering, 2019, 160: 113998. |
21 | LI Qingfeng, WANG Yanan, LIAN Chen, et al. Effect of micro encapsulated phase change material on the anti-dry-out ability of pulsating heat pipes[J]. Applied Thermal Engineering, 2019, 159: 113854. |
22 | SAGAR Kalpak R, NAIK H B, MEHTA Hemantkumar B. CFD analysis of cryogenic pulsating heat pipe with near critical diameter under varying gravity conditions[J]. Theoretical Foundations of Chemical Engineering, 2020, 54(1): 64-76. |
23 | XIE Fubo, LI Xinlong, QIAN Peng, et al. Effects of geometry and multisource heat input on flow and heat transfer in single closed-loop pulsating heat pipe[J]. Applied Thermal Engineering, 2020, 168: 114856. |
24 | WANG Jiansheng, XIE Jinyuan, LIU Xueling. Investigation of wettability on performance of pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119354. |
25 | 徐金柱, 焦波, 孙潇, 等. 单环路液氢温区脉动热管高充液率工况计算流体动力学(CFD)模拟[J]. 化工进展, 2020, 39(7): 2556-2565. |
XU Jinzhu, JIAO Bo, SUN Xiao, et al. CFD simulation on hydrogen pulsating heat pipe with single turn and a high filling ratio[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2556-2565. | |
26 | MUCCI Alberto, KHOLI Foster Kwame, Jason CHETWYND-CHATWIN, et al. Numerical investigation of flow instability and heat transfer characteristics inside pulsating heat pipes with different numbers of turns[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120934. |
27 | XU Dehao, CHEN Taofei, XUAN Yimin. Thermo-hydrodynamics analysis of vapor-liquid two-phase flow in the flat-plate pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2012, 39(4): 504-508. |
28 | LIN Zirong, WANG Shuangfeng, SHIRAKASHI Ryo, et al. Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modeling[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 642-656. |
29 | 唐恺, 陈曦. 低温脉动热管气液两相流数值模拟[J]. 能源工程, 2015(4): 4-8. |
TANG Kai, CHEN Xi. Numerical simulation of vapor-liquid two-phase flow in a cryogenic pulsating heat pipe[J]. Energy Engineering, 2015(4): 4-8. | |
30 | YEBOAH Siegfried K, DARKWA Jo. Investigations into the thermal performance of a helically coiled closed loop oscillating heat pipe[C]. Virginia: 14th International Energy Conversion Engineering Conference, 2016: 4794. |
31 | 邵帅, 陈曦, 唐恺, 等. 低温脉动热管传热特性的数值模拟研究[J]. 真空与低温, 2018, 24(1): 48-53. |
SHAO Shuai, CHEN Xi, TANG Kai, et al. Numerical simulation study on heat transfer characteristics of cryogenic pulsating heat pipe[J]. Vacuum and Cryogenics, 2018, 24(1): 48-53. | |
32 | 蒋二辉, 张东伟, 周俊杰, 等. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249. |
JIANG Erhui, ZHANG Dongwei, ZHOU Junjie, et al. Numerical simulation of pulsating heat pipes with two-bends in different structures[J]. CIESC Journal, 2019, 70(S2): 244-249. | |
33 | XU Hui, ZHANG Ping, YAN Lipei, et al. Thermal characteristic and analysis of microchannel structure flat plate pulsating heat pipe with silver nanofluid[J]. IEEE Access, 2019, 7: 51724-51734. |
34 | Duy-Tan VO, KIM Hyoung-Tak, Junghyuk KO, et al. An experiment and three-dimensional numerical simulation of pulsating heat pipes[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119317. |
35 | ZHANG Dongwei, JIANG Erhui, SHEN Chao, et al. Numerical simulation on pulsating heat pipe with connected-path structure[J]. Journal of Enhanced Heat Transfer, 2021, 28(2): 1-17. |
36 | WEI Zhikang, HOU Yan, DUAN Yanjun, et al. Numerical investigation on the thermal performance of three advanced micro heat pipes[J]. Heat Transfer Engineering, 2022, 43(14): 1193-1205. |
37 | PACHGHARE Pramod R, MAHALLE Ashish M. Thermo-hydrodynamics of closed loop pulsating heat pipe: An experimental study[J]. Journal of Mechanical Science and Technology, 2014, 28(8): 3387-3394. |
38 | POURYOUSSEFI S M, ZHANG Yuwen. Nonlinear analysis of chaotic flow in a three-dimensional closed-loop pulsating heat pipe[J]. Journal of Heat Transfer, 2016, 138(12): 122003. |
39 | Jiaqiang E, ZHAO Xiaohuan, LIU Haili, et al. Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe[J]. Applied Energy, 2016, 175: 218-228. |
40 | VENKATA SURESH J, BHRAMARA P. CFD analysis of multi turn pulsating heat pipe[J]. Materials Today: Proceedings, 2017, 4(2): 2701-2710. |
41 | 战洪仁, 于胜利, 王立鹏, 等. 亲水表面单环脉动热管的传热性能研究[J]. 化学工程, 2021, 49(11): 37-41, 78. |
ZHAN Hongren, YU Shengli, WANG Lipeng, et al. Heat transfer performance of single loop pulsating heat pipe on hydrophilic surface[J]. Chemical Engineering (China), 2021, 49(11): 37-41, 78. | |
42 | 陈贝贝, 陈曦, 邵帅, 等. 乙烷脉动热管的CFD数值模拟研究及实验对比[J]. 真空与低温, 2021, 27(1): 68-72. |
CHEN Beibei, CHEN Xi, SHAO Shuai, et al. CFD numerical simulation research and experimental comparison of an ethane pulsating heat pipe[J]. Vacuum and Cryogenics, 2021, 27(1): 68-72. | |
43 | 胡伟男, 周春鹏, 崔付龙, 等. 单环路平板脉动热管定向循环的数值研究[J]. 低温与超导, 2017, 45(2): 27-34. |
HU Weinan, ZHOU Chunpeng, CUI Fulong, et al. Numerical simulation of a single-loop flat plate pulsating heat pipe under unidirectional flow condition[J]. Cryogenics & Superconductivity, 2017, 45(2): 27-34. | |
44 | 王迅, 王盼, 刘梦阳, 等. 渐变式截面平板脉动热管的数值模拟及分析[J]. 化学工程, 2018, 46(7): 7-11. |
WANG Xun, WANG Pan, LIU Mengyang, et al. Numerical simulation and analysis of flat pulsating heat pipe with gradient section[J]. Chemical Engineering (China), 2018, 46(7): 7-11. | |
45 | 王迅, 刘梦阳, 王盼, 等. 变管径单回路脉动热管传热特性数值研究[J]. 化学工程, 2018, 46(9): 32-36. |
WANG Xun, LIU Mengyang, WANG Pan, et al. Numerical simulation on heat transfer characteristics of a single-loop pulsating heat pipe with variable diameters[J]. Chemical Engineering (China), 2018, 46(9): 32-36. | |
46 | CHOI Jongwook, ZHANG Yuwen. Numerical simulation of oscillatory flow and heat transfer in pulsating heat pipes with multi-turns using OpenFOAM[J]. Numerical Heat Transfer, Part A: Applications, 2020, 77(8): 761-781. |
47 | WANG Weiwei, WANG Lei, CAI Yang, et al. Thermo-hydrodynamic model and parametric optimization of a novel miniature closed oscillating heat pipe with periodic expansion-constriction condensers[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119460. |
48 | Przemysław BŁASIAK, OPALSKI Marcin, PARMAR Parthkumar, et al. The thermal—Flow processes and flow pattern in a pulsating heat pipe—Numerical modelling and experimental validation[J]. Energies, 2021, 14(18): 5952. |
49 | KREUTZER Michiel T, KAPTEIJN Freek, MOULIJN Jacob A, et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J]. AIChE Journal, 2005, 51(9): 2428-2440. |
50 | Hyung Yun NOH, KIM Sung Jin. Thermal characterization and optimization of pulsating heat pipes operating in a circulation mode[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1234-1246. |
51 | Soohwan JUN, KIM Sung Jin. Experimental investigation on the thermodynamic state of vapor plugs in pulsating heat pipes[J]. International Journal of Heat and Mass Transfer, 2019, 134: 321-328. |
52 | Jaeyeong JO, KIM Jungho, KIM Sung Jin. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe[J]. Energy Conversion and Management, 2019, 181: 331-341. |
53 | FOURGEAUD L, ERCOLANI E, DUPLAT J, et al. 3D reconstruction of dynamic liquid film shape by optical grid deflection method[J]. The European Physical Journal E, 2018, 41(1): 5. |
54 | FOURGEAUD Laura, NIKOLAYEV Vadim S, ERCOLANI Eric, et al. In situ investigation of liquid films in pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 126: 1023-1028. |
55 | ZHANG Xiaolong, NIKOLAYEV Vadim S. Liquid film dynamics with immobile contact line during meniscus oscillation[J]. Journal of Fluid Mechanics, 2021, 923: A4. |
56 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
57 | LAKEHAL D, MEIER M, FULGOSI M. Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows[J]. International Journal of Heat and Fluid Flow, 2002, 23(3): 242-257. |
58 | BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
59 | WEI Aibo, REN Xuan, LIN Shifeng, et al. CFD analysis on flow and heat transfer mechanism of a microchannel Ω-shape heat pipe under zero gravity condition[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120448. |
60 | LEE W H, LYCZKOWSKI R W. The basic character of five two-phase flow model equation sets[J]. International Journal for Numerical Methods in Fluids, 2000, 33(8): 1075-1098. |
61 | TANASAWA Ichiro. Advances in condensation heat transfer[M]//Advances in heat transfer volume 21. Amsterdam: Elsevier, 1991: 55-139. |
62 | Kafeel Khurram, TURAN Ali. Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology[J]. Heat and Mass Transfer, 2013, 49(8): 1089-1099. |
63 | XU Zhi, ZHANG Yaning, LI Bingxi, et al. Modeling the phase change process for a two-phase closed thermosyphon by considering transient mass transfer time relaxation parameter[J]. International Journal of Heat and Mass Transfer, 2016, 101: 614-619. |
64 | 刘纳, 李俊明. R32在水平微细圆管内凝结换热的数值模拟[J]. 化工学报, 2014, 65(11): 4246-4253. |
LIU Na, LI Junming. Numerical simulation of R32 condensation heat transfer in horizontal circular microchannel[J]. CIESC Journal, 2014, 65(11): 4246-4253. | |
65 | KUANG Y W, WANG Wen, ZHUAN Rui, et al. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux[J]. Annals of Nuclear Energy, 2015, 75: 158-167. |
66 | ANSYS. ANSYS Fluent. 12.0 Theory guide[M]. ANSYS Fluent Release, 2009. |
67 | 徐金柱. 液氢温区脉动热管流动和传热特性数值模拟[D]. 哈尔滨: 哈尔滨理工大学, 2020. |
XU Jinzhu. Simulation on characteristics of flow and heat transfer of pulsating heat pipe with hydrogen[D]. Harbin: Harbin University of Science and Technology, 2020. | |
68 | CHAROENSAWAN Piyanun, KHANDEKAR Sameer, GROLL Manfred, et al. Closed loop pulsating heat pipes[J]. Applied Thermal Engineering, 2003, 23(16): 2009-2020. |
[1] | 惠博, 侯宏艺, 张涛, 车生文. 圆柱形环状脉动热管烧干特性[J]. 化工进展, 2023, 42(S1): 33-40. |
[2] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[3] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[4] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[5] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[10] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[11] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[12] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[13] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[14] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[15] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |