化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3736-3748.DOI: 10.16085/j.issn.1000-6613.2022-1571
刘柏成1,2(), 李法云1,3(), 赵琦慧1,2, 吝美霞1,4
收稿日期:
2022-08-24
修回日期:
2022-10-04
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
李法云
作者简介:
刘柏成(1999—),男,硕士研究生,研究方向为有机污染土壤修复技术。E-mail:13654027288@163.com。
基金资助:
LIU Baicheng1,2(), LI Fayun1,3(), ZHAO Qihui1,2, LIN Meixia1,4
Received:
2022-08-24
Revised:
2022-10-04
Online:
2023-07-15
Published:
2023-08-14
Contact:
LI Fayun
摘要:
多环芳烃(PAHs)是一种难生物降解的有机污染物,其污染土壤的高效植物修复技术研发一直是环境修复技术领域极富挑战性的研究课题。植物修复技术具有绿色低碳、经济高效、效果稳定及修复过程安全等优点,在土壤修复行业应用潜力大。禾本科植物在PAHs污染土壤修复方面具有生长周期短、生物量大、覆盖面广、根系发达、抗逆性强等优点,其对土壤中PAHs污染物的降解研究一直方兴未艾。本文探讨了禾本科植物对PAHs污染土壤的修复机理、效果及强化修复方法,阐述了禾本科植物修复PAHs污染土壤的研究现状及发展趋势。
中图分类号:
刘柏成, 李法云, 赵琦慧, 吝美霞. 禾本科植物修复多环芳烃污染土壤研究进展[J]. 化工进展, 2023, 42(7): 3736-3748.
LIU Baicheng, LI Fayun, ZHAO Qihui, LIN Meixia. Research progress on remediation of polycyclic aromatic hydrocarbons contaminated soil by Gramineae plants[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3736-3748.
指标 | 多年生黑麦草 | 白三叶 |
---|---|---|
生物量/g[ | 13.09±1.78/盆 (10株) | 3.05±0.13/盆 (10株) |
地下部PAHs含量/µg·kg-1[ | 733.0 | 576.7 |
生物富集系数BCF[ | 0.085 | 0.061 |
总PAHs降解率[ | 46.8% | 40.6% |
表1 禾本科植物多年生黑麦草与豆科植物白三叶对比
指标 | 多年生黑麦草 | 白三叶 |
---|---|---|
生物量/g[ | 13.09±1.78/盆 (10株) | 3.05±0.13/盆 (10株) |
地下部PAHs含量/µg·kg-1[ | 733.0 | 576.7 |
生物富集系数BCF[ | 0.085 | 0.061 |
总PAHs降解率[ | 46.8% | 40.6% |
中文名 | 学名 | 科名 | 属名 | 分布区域 |
---|---|---|---|---|
纳皮草(象草) | Pennisetum purpureum Schum. | 禾本科 | 狼尾草属 | 原产非洲。引种中国、印度、缅甸、大洋洲及美洲 |
多年生芦苇金丝雀草(RCG) | Phalaris arundinacea L. | 禾本科 | 虉草属 | 温带地区,但亚热带地区可栽培 |
芒草 | Miscanthus | 禾本科 | 芒属 | 国内外均有所分布 |
柳枝稷 | Panicum virgatum L. | 禾本科 | 稷属 | 温带、热带、亚热带地区均有所分布 |
五节芒 | Miscanthus floridulus (Lab.) Warb. ex Schum.et Laut. | 禾本科 | 芒属 | 主要分布在热带和亚热带地区 |
表2 禾本科能源植物
中文名 | 学名 | 科名 | 属名 | 分布区域 |
---|---|---|---|---|
纳皮草(象草) | Pennisetum purpureum Schum. | 禾本科 | 狼尾草属 | 原产非洲。引种中国、印度、缅甸、大洋洲及美洲 |
多年生芦苇金丝雀草(RCG) | Phalaris arundinacea L. | 禾本科 | 虉草属 | 温带地区,但亚热带地区可栽培 |
芒草 | Miscanthus | 禾本科 | 芒属 | 国内外均有所分布 |
柳枝稷 | Panicum virgatum L. | 禾本科 | 稷属 | 温带、热带、亚热带地区均有所分布 |
五节芒 | Miscanthus floridulus (Lab.) Warb. ex Schum.et Laut. | 禾本科 | 芒属 | 主要分布在热带和亚热带地区 |
禾本科植物 | 污染物初始浓度 | 污染修复的效果 |
---|---|---|
多花黑麦草 Lolium perenne L. | 将5g土壤浸泡在含有菲的丙酮中,处理后的土壤与未受污染的土壤混合稀释,最终浓度分别为5mg/kg、50mg/kg和200mg/kg | 在5mg/kg、50mg/kg和200mg/kg菲处理中,菲降解率分别为81.1%、90.4%和85.0%,而不加黑麦草的盆栽中菲降解率为73.5%、86.2%和67.6%[ |
苏丹草 Sorghum vulgare | 将400g的土壤称重,喷洒多环芳烃溶液(荧烯、菲、荧蒽和芘各1mg/mL),最终浓度为400mg/kg | 苏丹草对多环芳烃的去除率在20d后达到最大值,去除率为98%~57%[ |
玉米 Zea mays | 将1mg、5mg和10mg的苯并[a]芘分别溶于25mL丙酮中,向土壤中添加苯并[a]芘。丙酮和苯并[a]芘的溶液与250g土壤混合,待丙酮在通风柜内完全挥发后再与750g土壤混合 | 在60d的温室种植中,观察到的苯并[a]芘单一污染土壤中的耗散率达到42%~63%[ |
火凤凰,为禾本科组合植物,包括高羊茅和大羊茅等(Fire Phoenix) | 按试验设计将污染土壤稀释至70.80~79.81mg/kg。∑8PAHs组成为:1.19~1.47mg/kg氟蒽,2.39~3.42mg/kg芘,2.71~2.88mg/kg苯并[a]蒽,1.27~3.68mg/kg,7.57~9.90mg/kg苯并[b]荧蒽,1.90~4.88mg/kg苯并[k]荧蒽,12.35~18.17mg/kg苯并[a]芘,38.18~40.06mg/kg二苯并[a,h]蒽 | 经150d培养,火凤凰对Σ8PAHs的降解率可达99.40%[ |
高羊茅与柳枝稷 | 干净土壤受到14C-芘(Sigma Science)和未标记芘的污染,使芘的总浓度为50mg/kg | 培养190d后,种植高羊茅和柳枝稷的土壤中14C-芘的矿化率为37.7%和30.4%,对照土壤中14C-芘的矿化率为4.3%[ |
表3 盆栽实验下中的多环芳烃类污染土壤的禾本科植物修复
禾本科植物 | 污染物初始浓度 | 污染修复的效果 |
---|---|---|
多花黑麦草 Lolium perenne L. | 将5g土壤浸泡在含有菲的丙酮中,处理后的土壤与未受污染的土壤混合稀释,最终浓度分别为5mg/kg、50mg/kg和200mg/kg | 在5mg/kg、50mg/kg和200mg/kg菲处理中,菲降解率分别为81.1%、90.4%和85.0%,而不加黑麦草的盆栽中菲降解率为73.5%、86.2%和67.6%[ |
苏丹草 Sorghum vulgare | 将400g的土壤称重,喷洒多环芳烃溶液(荧烯、菲、荧蒽和芘各1mg/mL),最终浓度为400mg/kg | 苏丹草对多环芳烃的去除率在20d后达到最大值,去除率为98%~57%[ |
玉米 Zea mays | 将1mg、5mg和10mg的苯并[a]芘分别溶于25mL丙酮中,向土壤中添加苯并[a]芘。丙酮和苯并[a]芘的溶液与250g土壤混合,待丙酮在通风柜内完全挥发后再与750g土壤混合 | 在60d的温室种植中,观察到的苯并[a]芘单一污染土壤中的耗散率达到42%~63%[ |
火凤凰,为禾本科组合植物,包括高羊茅和大羊茅等(Fire Phoenix) | 按试验设计将污染土壤稀释至70.80~79.81mg/kg。∑8PAHs组成为:1.19~1.47mg/kg氟蒽,2.39~3.42mg/kg芘,2.71~2.88mg/kg苯并[a]蒽,1.27~3.68mg/kg,7.57~9.90mg/kg苯并[b]荧蒽,1.90~4.88mg/kg苯并[k]荧蒽,12.35~18.17mg/kg苯并[a]芘,38.18~40.06mg/kg二苯并[a,h]蒽 | 经150d培养,火凤凰对Σ8PAHs的降解率可达99.40%[ |
高羊茅与柳枝稷 | 干净土壤受到14C-芘(Sigma Science)和未标记芘的污染,使芘的总浓度为50mg/kg | 培养190d后,种植高羊茅和柳枝稷的土壤中14C-芘的矿化率为37.7%和30.4%,对照土壤中14C-芘的矿化率为4.3%[ |
表面活性剂 | 组分 | 化学式 | 分子量 | 临界胶束浓度/mm | 种类 |
---|---|---|---|---|---|
Tween20[ | 聚氧乙烯脱水山梨糖醇单月桂酸酯 | C58H114O26 | 1227.54 | 0.12 | 非离子型合成表面活性剂 |
Tween80[ | 聚氧乙烯脱水山梨糖醇单油酸酯 | C17H35COOS6(OCH2CH2)20OH | 1309 | 0.027 | 非离子型合成表面活性剂 |
Brij35[ | 聚(氧乙烯)23十二烷基醚 | C12H25(OC2CH2)23OH | 1200 | 0.055 | 非离子型合成表面活性剂 |
CTAB[ | 十六烷基三烷基溴化铵 | CH3(CH2)15NBr (CH3)3 | 364.45 | 0.784 | 阳离子型合成表面活性剂 |
DDEAB[ | 十二烷基乙基二甲基溴化铵 | (CH3(CH2)11N+(CH3)2C2H5) Br | 322.37 | 14 | 阳离子型合成表面活性剂 |
SDS[ | 十二烷基硫酸钠 | C12H25OSO3Na | 288.38 | 5.5 | 阴离子型合成表面活性剂 |
表4 常见合成表面活性剂的种类和理化性质
表面活性剂 | 组分 | 化学式 | 分子量 | 临界胶束浓度/mm | 种类 |
---|---|---|---|---|---|
Tween20[ | 聚氧乙烯脱水山梨糖醇单月桂酸酯 | C58H114O26 | 1227.54 | 0.12 | 非离子型合成表面活性剂 |
Tween80[ | 聚氧乙烯脱水山梨糖醇单油酸酯 | C17H35COOS6(OCH2CH2)20OH | 1309 | 0.027 | 非离子型合成表面活性剂 |
Brij35[ | 聚(氧乙烯)23十二烷基醚 | C12H25(OC2CH2)23OH | 1200 | 0.055 | 非离子型合成表面活性剂 |
CTAB[ | 十六烷基三烷基溴化铵 | CH3(CH2)15NBr (CH3)3 | 364.45 | 0.784 | 阳离子型合成表面活性剂 |
DDEAB[ | 十二烷基乙基二甲基溴化铵 | (CH3(CH2)11N+(CH3)2C2H5) Br | 322.37 | 14 | 阳离子型合成表面活性剂 |
SDS[ | 十二烷基硫酸钠 | C12H25OSO3Na | 288.38 | 5.5 | 阴离子型合成表面活性剂 |
1 | LI Ruifei, HUA Pei, KREBS P. Global trends and drivers in consumption- and income-based emissions of polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2022, 56(1): 131-144. |
2 | 程国玲, 李培军, 王凤友, 等. 多环芳烃污染土壤的植物与微生物修复研究进展[J]. 环境污染治理技术与设备, 2003(6): 30-36. |
CHENG Guoling, LI Peijun, WANG Fengyou, et al. The progress of phytoremediation and microbial remediation on PAHs contaminated soil[J]. Techniques and Equipment for Environmental Pollution Control, 2003(6): 30-36. | |
3 | 张泽霆, 陈英, 陈东, 等. 生物修复石油污染土壤研究现状[J]. 土壤通报, 2019, 50(1): 246-252. |
ZHANG Zeting, CHEN Ying, CHEN Dong, et al. Review on bioremediation for the petroleum contaminated soil[J]. Chinese Journal of Soil Science, 2019, 50(1): 246-252. | |
4 | 吕莹, 胡学武, 陈素素, 等. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
Ying LYU, HU Xuewu, CHEN Susu, et al. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3249-3262. | |
5 | 刘维涛, 李剑涛, 郑泽其, 等. 微生物固定化技术修复石油烃污染土壤[J]. 应用技术学报, 2021, 21(4): 339-347. |
LIU Weitao, LI Jiantao, ZHENG Zeqi, et al. Microbial immobilization technology for bioremediation of petroleum hydrocarbon contaminated soil[J]. Journal of Technology, 2021, 21(4): 339-347. | |
6 | 井永苹. 土壤动物(线虫、蚯蚓)对污染土壤多环芳烃去除的影响[D]. 南京: 南京农业大学, 2011. |
JING Yongping. Effects of soil fauna (nematodes and earthworms) on the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil[D]. Nanjing: Nanjing Agricultural University, 2011. | |
7 | 潘声旺, 袁馨, 魏世强. 蚯蚓活动对高羊茅修复土壤芘污染的强化作用[J]. 云南大学学报(自然科学版), 2010, 32(5): 587-593. |
PAN Shengwang, YUAN Xin, WEI Shiqiang. A study on the contribution of earthworm inoculation to the remediation of the pyrene-polluted soil by Festuca arundinacea [J]. Journal of Yunnan University (Natural Sciences Edition), 2010, 32(5): 587-593. | |
8 | 郑美林, 赵颖豪, 苗莉莉, 等. 多环芳烃污染土壤生物修复研究进展[J]. 生物工程学报, 2021, 37(10): 3535-3548. |
ZHENG Meilin, ZHAO Yinghao, MIAO Lili, et al. Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3535-3548. | |
9 | WU Yucheng, DING Qingmin, ZHU Qinghe, et al. Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil[J]. Soil Biology & Biochemistry, 2018, 118: 27-34. |
10 | MA Xiaodong, LI Xia, LIU Junxiang, et al. Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons[J]. The Science of the Total Environment, 2021, 752: 142224. |
11 | 高野萌, 杨雪莲, 李凤梅, 等. 高环多环芳烃降解菌的筛选及其降解特性[J]. 生态学杂志, 2016, 35(6): 1539-1546. |
GAO Yemeng, YANG Xuelian, LI Fengmei, et al. Isolation of heavy PAH-degrading bacteria and their characteristics of degradation[J]. Chinese Journal of Ecology, 2016, 35(6): 1539-1546. | |
12 | 吝美霞, 李法云, 王玮, 等. 生物炭负载P掺杂g-C3N4复合光催化剂制备及其对萘光催化降解机制[J]. 环境科学学报, 2021, 41(8): 3200-3210. |
LIN Meixia, LI Fayun, WANG Wei, et al. Synthesis of biochar-supported P-doped g-C3N4 photocatalyst and its photocatalytic degradation mechanism to naphthalene[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3200-3210. | |
13 | 王山榕, 王永剑, 单广波. 过硫酸钠-过氧化钙修复多环芳烃污染土壤[J]. 化工环保, 2022, 42(2): 173-178. |
WANG Shanrong, WANG Yongjian, SHAN Guangbo. Remediation of PAHs contaminated soil with sodium persulfate-calcium peroxide[J]. Environmental Protection of Chemical Industry, 2022, 42(2): 173-178. | |
14 | 王彦, 李静文, 王钪, 等. 焦化类污染场地氧化降解多环芳烃试验研究[J]. 绿色科技, 2021, 23(16): 71-77. |
WANG Yan, LI Jingwen, WANG Kang, et al. Experimental study on oxidative degradation of polycyclic aromatic hydrocarbons in coking polluted sites[J]. Journal of Green Science and Technology, 2021, 23(16): 71-77. | |
15 | 徐佩贤, 费凌, 陈旭兵, 等. 四种冷季型草坪植物对镉的耐受性与积累特性[J]. 草业学报, 2014, 23(6): 176-188. |
XU Peixian, FEI Ling, CHEN Xubing, et al. Cadmium tolerance and accumulation in four cool-season turfgrasses[J]. Acta Prataculturae Sinica, 2014, 23(6): 176-188. | |
16 | 王艳, 辛士刚, 马莲菊, 等. 翦股颖和高羊茅对铜、铅吸收及耐受性[J]. 应用生态学报, 2007, 18(3): 625-630. |
WANG Yan, XIN Shigang, MA Lianju, et al. Cu and Pb absorption and tolerance of Agrostis stolonifera and Festuca arundinacea [J]. Chinese Journal of Applied Ecology, 2007, 18(3): 625-630. | |
17 | 钱晓荣, 董毛毛. 对二氯苯污染土壤的植物修复研究[J]. 环境污染与防治, 2009, 31(8): 67-70. |
QIAN Xiaorong, DONG Maomao. Phytoremediation of PDCB contaminated soil[J]. Environmental Pollution & Control, 2009, 31(8): 67-70. | |
18 | 潘声旺, 魏世强. 高羊茅对土壤中菲、芘污染的修复机制研究[J]. 成都大学学报(自然科学版), 2010, 29(2): 107-111. |
PAN Shengwang, WEI Shiqiang. Repair mechanism research on pollution of phenanthrene and pyrene by tall fescue in soil[J]. Journal of Chengdu University (Natural Science Edition), 2010, 29(2): 107-111. | |
19 | 解新明, 周峰, 赵燕慧, 等. 多年生能源禾草的产能和生态效益[J]. 生态学报, 2008, 28(5): 2329-2342. |
XIE Xinming, ZHOU Feng, ZHAO Yanhui, et al. A summary of ecological and energy-producing effects of perennial energy grasses[J]. Acta Ecologica Sinica, 2008, 28(5): 2329-2342. | |
20 | 黄清俊, 王宏伟, 李萍, 等. 上海盐碱地区适生草本能源植物种植选择浅析[J]. 上海应用技术学院学报(自然科学版), 2012, 12(3): 210-213. |
HUANG Qingjun, WANG Hongwei, LI Ping, et al. Analysis of planting herbal energy plants suitable to the saline-alkali mudflats in Shanghai areas[J]. Journal of Shanghai Institute of Technology (Natural Science), 2012, 12(3): 210-213. | |
21 | 沈源源, 滕应, 骆永明, 等. 几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J]. 土壤, 2011, 43(2): 253-257. |
SHEN Yuanyuan, TENG Ying, LUO Yongming, et al. Remediation efficiency of several legumes and grasses in PAH-contaminated soils[J]. Soils, 2011, 43(2): 253-257. | |
22 | 李法云, 臧树良, 罗义. 污染土壤生物修复技术研究[J]. 生态学杂志, 2003, 22(1): 35-39. |
LI Fayun, ZANG Shuliang, LUO Yi. Bioremediation of contaminated soils: A review[J]. Chinese Journal of Ecology, 2003, 22(1): 35-39. | |
23 | 杨艳, 凌婉婷, 高彦征, 等. 几种多环芳烃的植物吸收作用及其对根系分泌物的影响[J]. 环境科学学报, 2010, 30(3): 593-599. |
YANG Yan, LING Wanting, GAO Yanzheng, et al. Plant uptake of polycyclic aromatic hydrocarbons (PAHs) and their impacts on root exudates[J]. Acta Scientiae Circumstantiae, 2010, 30(3): 593-599. | |
24 | NI Ni, WANG Fang, SONG Yang, et al. Effects of cationic surfactant on the bioaccumulation of polycyclic aromatic hydrocarbons in rice and the soil microbial community structure[J]. RSC Advances, 2017, 7(66): 41444-41451. |
25 | CHIAPUSIO G, DESALME D, PUJOL S, et al. Two biochemical forms of phenanthrene recovered in grassland plants (Lolium perenne L. and Trifolium pratense L.) grown in 3 spiked soils[J]. Plant and Soil, 2011, 344(1/2): 295-303. |
26 | 张明. 碳水化合物及脂肪在黑麦草吸收多环芳烃中的作用[D]. 杭州: 浙江大学, 2009. |
ZHANG Ming. Effect of carbohydrates and lipids on uptake of polycyclic aromatic hydrocarbons by ryegrass[D]. Hangzhou: Zhejiang University, 2009. | |
27 | 张晓斌. 多环芳烃(菲)污染土壤禾本科/豆科植物间作修复效应及其机制[D]. 南京: 南京农业大学, 2011. |
ZHANG Xiaobin. Intercropping remediation of legume and Gramineae in phenanthrene contaminated soil and its mechanism[D]. Nanjing: Nanjing Agricultural University, 2011. | |
28 | ROHRBACHER F, ST-ARNAUD M. Root exudation: The ecological driver of hydrocarbon rhizoremediation[J]. Agronomy, 2016, 6(1). |
29 | KOŠNÁŘ, ČÁSTKOVÁ T, WIESNEROVÁ L, et al. Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities[J]. Journal of Environmental Sciences, 2019, 76: 249-258. |
30 | DUBROVSKAYA E, POZDNYAKOVA N, GOLUBEV S, et al. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation[J]. Chemosphere, 2017, 169: 224-232. |
31 | BARONE R, DE BIASI M G, PICCIALLI V, et al. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10[J]. Chemosphere, 2016, 160: 258-265. |
32 | ZHENG Tingyu, LIU Rui, CHEN Jianjun, et al. Fire Phoenix plant mediated microbial degradation of pyrene: Increased expression of functional genes and diminishing of degraded products[J]. Chemical Engineering Journal, 2021, 407. |
33 | SIVARAM A, LOGESHWARAN P, LOCKINGTON R, et al. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria[J]. Chemosphere, 2019, 222: 132-140. |
34 | SUN Bingqing, GAO Yanzheng. The impact of different root exudate components on phenanthrene availability in soil[M]// Functions of Natural Organic Matter in Changing Environment. Dordrecht: Springer, 2013: 653-657. |
35 | WANG Yuanyuan, FANG Ling, LIN Li, et al. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons[J]. Chemosphere, 2014, 99: 152-159. |
36 | XIE Xiaomei, LIAO M, YANG Jing, et al. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil[J]. Chemosphere, 2012, 88: 1190-1195. |
37 | TECHER D, D’INNOCENZO M, LAVAL-GILLY P, et al. Assessment of Miscanthus × giganteus secondary root metabolites for the biostimulation of PAH-utilizing soil bacteria[J]. Applied Soil Ecology, 2012, 62: 142-146. |
38 | MIYA R K, FIRESTONE M. Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass[J]. Journal of Environmental Quality, 2000, 29(2): 584-592. |
39 | MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319-1334. |
40 | REN Chenggang, KONG Cuncui, BIAN Bian, et al. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium[J]. International Journal of Phytoremediation, 2017, 19(9): 789-797. |
41 | SU Yuhong, YANG Xueyun, CHIOU C T. Effect of rhizosphere on soil microbial community and in situ pyrene biodegradation[J]. Frontiers of Environmental Science & Engineering in China, 2008, 2(4): 468-474. |
42 | GUARINO C, ZUZOLO D, MARZIANO M, et al. Investigation and assessment for an effective approach to the reclamation of polycyclic aromatic hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy[J]. Scientific Reports, 2019, 9(1): 11522. |
43 | DOMINGUEZ J J A, BACOSA H P, CHIEN Meifang, et al. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum × drummondii)[J]. Chemosphere, 2019, 234: 789-795. |
44 | LIU Rui, XIAO Nan, WEI Shuhe, et al. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix[J]. The Science of the Total Environment, 2014, 473/474: 350-358. |
45 | LIU S L, CAO Z H, LIU H E. Effect of ryegrass (Lolium multiflorum L.) growth on degradation of phenanthrene and enzyme activity in soil[J]. Plant, Soil and Environment, 2013, 59(6): 247-253. |
46 | CHIGBO C, BATTY L. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.[J]. Environmental Science and Pollution Research, 2014, 21(4): 3051-3059. |
47 | CHEN Y, BANKS M K, SCHWAB A P. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.)[J]. Environmental Science and Technology, 2003, 37: 5778-5782. |
48 | CHEEMA S A, KHAN M I, SHEN Chaofeng, et al. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 384-389. |
49 | 王娇娇, 呼世斌, 魏丽琼, 等. 甜菜与牧草间作对多环芳烃污染土壤的修复作用[J]. 农业环境科学学报, 2016, 35(6): 1090-1096. |
WANG Jiaojiao, HU Shibin, WEI Liqiong, et al. Phytoremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by intercropped beet-grasses[J]. Journal of Agro-Environment Science, 2016, 35(6): 1090-1096. | |
50 | SOMTRAKOON K, CHOUYCHAI W. Removal of phenanthrene and cadmium from co-contaminated alkaline soil by carpet grass, Siam weed and winged bean[J]. Journal of Environmental Biology, 2018, 39(5): 558-564. |
51 | SOMTRAKOON K, CHOUYCHAI W, LEE Hung. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation[J]. International Journal of Phytoremediation, 2014, 16(4): 415-428. |
52 | LEE Dal Heui, CODY R D, KIM Dong Ju, et al. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil[J]. Environment International, 2002, 27(8): 681-688. |
53 | LAMICHHANE S, KRISHNA K C BAL, SARUKKALIGE R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review[J]. Journal of Environmental Management, 2017, 199: 46-61. |
54 | KESHAVARZ S, GHASEMI-FASAEI R, RONAGHI A, et al. Nutritional composition, growth and enzymatic response of vetiver grass grown under crude oil contamination as influenced by gibberellic acid and surfactant[J]. Journal of Plant Nutrition, 2020, 43(3): 418-428. |
55 | LIU Xiaoyan, SHEN Siyuan, ZHANG Xinying, et al. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.)[J]. Environmental Science and Pollution Research International, 2020, 27(33): 41639-41646. |
56 | RODRIGUES A, NOGUEIRA R, MELO L F, et al. Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation[J]. International Biodeterioration & Biodegradation, 2013, 83: 48-55. |
57 | ZHAO Baowei, ZHU Lizhong, LI Wei, et al. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions[J]. Chemosphere, 2005, 58(1): 33-40. |
58 | YANG Xingjian, LU Guining, SHE Bojia, et al. Cosolubilization of 4,4'-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles[J]. Chemical Engineering Journal, 2015, 260: 74-82. |
59 | MASRAT R, MASWAL M, DAR A A. Competitive solubilization of naphthalene and pyrene in various micellar systems[J]. Journal of Hazardous Materials, 2013, 244/245: 662-670. |
60 | STELIGA T, KLUK D. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110409. |
61 | CARTMILL A D, CARTMILL D L, ALARCÓN A. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil[J]. International Journal of Phytoremediation, 2014, 16(3): 285-301. |
62 | 刘慧霞, 林丽果, 武文莉, 等. 硅对不同抗性高羊茅耐盐性的影响[J]. 草业学报, 2018, 27(10): 84-92. |
LIU Huixia, LIN Liguo, WU Wenli, et al. Effect of silicon supply on the salt tolerance of two tall fescue (Festuca arundinacea) varieties with different salt resistance levels[J]. Acta Prataculturae Sinica, 2018, 27(10): 84-92. | |
63 | 柴薇薇, 曾亮, 蒲晓霞, 等. 氯化钙对盐胁迫下紫羊茅生长抑制的缓解效应初探[J]. 西北民族大学学报(自然科学版), 2018, 39(2): 48-52. |
CHAI Weiwei, ZENG Liang, PU Xiaoxia, et al. Study on the calcium chloride alleviating growth inhibition of Festuca rubra under salinity[J]. Journal of Northwest University for Nationalities (Natural Science), 2018, 39(2): 48-52. | |
64 | 江生泉, 薛正帅, 梁建军, 等. 外源水杨酸对盐胁迫高羊茅生长和生理的影响[J]. 湖南农业大学学报(自然科学版), 2021, 47(2): 166-170. |
JIANG Shengquan, XUE Zhengshuai, LIANG Jianjun, et al. Effects of exogenous salicylic acid on growth and physiology of tall fescue under salt stress[J]. Journal of Hunan Agricultural University (Natural Sciences), 2021, 47(2): 166-170. | |
65 | 赵晟晨, 杨靖民, 周清华, 等. 水热炭源改良剂对盐碱地牧草生长及根际土壤酶活性的影响[J\OL]. 吉林农业大学学报. |
Zhao Shengchen, Yang Jingmin, Zhou Qinghua, et al. Effects of hydrothermal carbon source modifiers on the growth of forage grass and rhizosphere soil enzyme activities in saline-alkali land[J\OL]. Journal of Jilin Agricultural University. |
[1] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[2] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[3] | 颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80. |
[4] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
[5] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[6] | 马明超, 臧甲忠, 于海斌, 范景新, 郭春垒, 靳凤英. 金属改性对多环芳烃选择性开环Pt/Beta催化剂性能的影响[J]. 化工进展, 2021, 40(11): 6113-6120. |
[7] | 刘玥, 牛婷雨, 李天国, 蒋明, 熊俊芬, 李博, 湛方栋, 何永美. 电动力学辅助植物修复重金属污染土壤的特征机制与机遇[J]. 化工进展, 2020, 39(12): 5252-5265. |
[8] | 李文英, 李阳, 马艳飞, 张俊锋, 李秋红, 何芳. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
[9] | 王旺阳, 刘聪, 袁珮. 吸附法去除环境中多环芳烃的研究进展[J]. 化工进展, 2017, 36(01): 355-363. |
[10] | 于红艳,徐 峰,陈红云,杨伟群,杨珍珍. 黑腐酸的改性及其对土壤中多环芳烃的洗脱作用[J]. 化工进展, 2013, 32(03): 697-701. |
[11] | 许俊强,郭 芳,全学军,赵清华,储 伟. 焦化废水中的杂环化合物及多环芳烃降解的研究进展 [J]. 化工进展, 2008, 27(7): 973-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |