化工进展 ›› 2023, Vol. 42 ›› Issue (6): 2904-2915.DOI: 10.16085/j.issn.1000-6613.2022-1484
陈怡欣(), 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛(), 张群峰(), 李小年
收稿日期:
2022-08-11
修回日期:
2022-11-14
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
王清涛,张群峰
作者简介:
陈怡欣(1998—),女,硕士研究生,研究方向为选择性催化加氢。E-mail:2112001132@zjut.edu.cn。
基金资助:
CHEN Yixin(), ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao(), ZHANG Qunfeng(), LI Xiaonian
Received:
2022-08-11
Revised:
2022-11-14
Online:
2023-06-25
Published:
2023-06-29
Contact:
WANG Qingtao, ZHANG Qunfeng
摘要:
铂基金属催化剂在许多重要的液相加氢化学转化中起着至关重要的作用,研究尺寸、晶型及形貌可控的催化剂以制备铂利用率高及活性好的催化剂具有重要意义。本文系统地介绍了铂基金属催化剂的研究进展,包括不同铂基金属纳米催化剂的合成方法、还原剂的种类以及影响铂基催化剂性能的重要因素(包括粒子粒径、形貌、组成、载体)对催化活性和选择性的影响。铂基催化材料催化效率高但价格昂贵,文中指出进一步探索铂基催化剂对加氢反应机理的影响机制,降低成本的同时提高催化剂寿命并实现铂基催化剂的可控制备仍是未来的重点研究方向。
中图分类号:
陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915.
CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915.
制备方法 | 优点 | 缺点 |
---|---|---|
浸渍法、热还原法、液相还原法 | 反应条件一般较为简单,易于控制,适合大规模工业化生产 | 合成的Pt粒子分散性较差,粒径分布范围较广 |
溶胶-凝胶法 | 对设备要求低、均匀性好、颗粒细、纯度高、产物活性高 | 原料成本高、成形性能和烧结性差 |
微乳液法 | 操作方便、产物粒径小、均匀性好 | 产率低、成本较高 |
沉积沉淀法 | 可将纳米粒子负载在任何形状,如蜂窝状、粒状、片状等的载体上,纳米颗粒常位于载体表面,利于催化剂发挥其催化作用 | 易引入杂质,影响催化剂纯度,此法受反应溶液的浓度、pH和温度等制备条件影响较大,易导致催化剂粒度分布不均 |
原子层沉积法 | 参数高度可控,沉积均匀;制备的铂催化剂具有较好的抗烧结、抗积炭性能,具有自限性,可有效防止金属聚集,重复性好,可以实现Pt纳米粒子到单原子的制备 | 需要复杂且昂贵的设备,且制备过程中存在传质问题,工业化存在挑战 |
光化学法 | 制备的催化剂具有较强的金属-载体相互作用,具有较小的金属颗粒、较高的分散程度和电子云密度,对底物活化能力更强。此法操作简单、适于工业化应用 | 对载体有要求,还原过程所需时间较长 |
原位合成法 | 制备的纳米复合材料界面无污染、结合强度较高,省去了预处理工序,简化了制备工艺 | 合成体系有限、产物致密度不高 |
表1 制备方法优缺点
制备方法 | 优点 | 缺点 |
---|---|---|
浸渍法、热还原法、液相还原法 | 反应条件一般较为简单,易于控制,适合大规模工业化生产 | 合成的Pt粒子分散性较差,粒径分布范围较广 |
溶胶-凝胶法 | 对设备要求低、均匀性好、颗粒细、纯度高、产物活性高 | 原料成本高、成形性能和烧结性差 |
微乳液法 | 操作方便、产物粒径小、均匀性好 | 产率低、成本较高 |
沉积沉淀法 | 可将纳米粒子负载在任何形状,如蜂窝状、粒状、片状等的载体上,纳米颗粒常位于载体表面,利于催化剂发挥其催化作用 | 易引入杂质,影响催化剂纯度,此法受反应溶液的浓度、pH和温度等制备条件影响较大,易导致催化剂粒度分布不均 |
原子层沉积法 | 参数高度可控,沉积均匀;制备的铂催化剂具有较好的抗烧结、抗积炭性能,具有自限性,可有效防止金属聚集,重复性好,可以实现Pt纳米粒子到单原子的制备 | 需要复杂且昂贵的设备,且制备过程中存在传质问题,工业化存在挑战 |
光化学法 | 制备的催化剂具有较强的金属-载体相互作用,具有较小的金属颗粒、较高的分散程度和电子云密度,对底物活化能力更强。此法操作简单、适于工业化应用 | 对载体有要求,还原过程所需时间较长 |
原位合成法 | 制备的纳米复合材料界面无污染、结合强度较高,省去了预处理工序,简化了制备工艺 | 合成体系有限、产物致密度不高 |
1 | FILONENKO Georgy A, VAN PUTTEN Robbert, HENSEN Emiel J M, et al. Catalytic (de)hydrogenation promoted by non-precious metals-Co, Fe and Mn: Recent advances in an emerging field[J]. Chemical Society Reviews, 2018, 47(4): 1459-1483. |
2 | WANG Chen, CHEN Xing, CHEN Tianming, et al. In-situ SHINERS study of the size and composition effect of Pt-based nanocatalysts in catalytic hydrogenation[J]. ChemCatChem, 2020, 12(1): 75-79. |
3 | LI Shaopeng, YANG Youdi, WANG Yanyan, et al. A route to support Pt sub-nanoparticles on TiO2 and catalytic hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at room temperature[J]. Catalysis Science & Technology, 2018, 8(17): 4314-4317. |
4 | DU Jintao, QIAO Meng, PU Yuan, et al. Aqueous dispersions of monodisperse Pt, Pd, and Au nanoparticles stabilized by thermosensitive polymer for the efficient reduction of nitroarenes[J]. Applied Catalysis A: General, 2021, 624: 118323. |
5 | CHUNG Iljun, SONG Byeongju, KIM Jeongmyeong, et al. Enhancing effect of residual capping agents in heterogeneous enantioselective hydrogenation of α-keto esters over polymer-capped Pt/Al2O3 [J]. ACS Catalysis, 2021, 11(1): 31-42. |
6 | SONG Bochuan, CHOI Diana, XIN Yan, et al. Ultra-low loading Pt/CeO2 catalysts: Ceria facet effect affords improved pairwise selectivity for parahydrogen enhanced NMR spectroscopy[J]. Angewandte Chemie International Edition, 2021, 60 (8): 4038-4042. |
7 | WANG Meihua, YANG Wen. Pt nanoparticles confined in TiO2 nanotubes with enhanced catalytic performance for phenol hydrogenation by atomic layer deposition[J]. Catalysis Letters, 2022, 152(4): 1020-1028. |
8 | LIU Yanan, MIAO Chenglin, YANG Pengfei, et al. Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O[J]. Applied Catalysis B: Environmental, 2019, 244: 919-930. |
9 | ZHANG Yanji, ZHOU Jicheng. Synergistic catalysis by a hybrid nanostructure Pt catalyst for high-efficiency selective hydrogenation of nitroarenes[J]. Journal of Catalysis, 2021, 395: 445-456. |
10 | PONGTHAWORNSAKUN Boontida, KAEWSUANJIK Palida, KITTIPREECHAKUN Pongsakorn, et al. Deposition of Pt nanoparticles on TiO2 by pulsed direct current magnetron sputtering for selective hydrogenation of vanillin to vanillyl alcohol[J]. Catalysis Today, 2020, 358: 51-59. |
11 | YANG Jingyi, FAN Yanping, LI Zhongli, et al. Bimetallic Pd-M (M=Pt, Ni, Cu, Co) nanoparticles catalysts with strong electrostatic metal-support interaction for hydrogenation of toluene and benzene[J]. Molecular Catalysis, 2020, 492: 110992. |
12 | 胡一鸣, 郑万彬, 汤岑, 等.贵金属催化剂上巴豆醛选择性加氢的研究进展[J]. 分子催化, 2020, 34(4): 366-377. |
HU Yiming, ZHENG Wanbin, TANG Cen, et al. Recent advances in selective hydrogenation of crotonaldehyde over noble metal catalysts[J]. Journal of Molecular Catalysis (China), 2020, 34(4): 366-377. | |
13 | RÖTZER M, KRAUSE M, CRAMPTON A, et al. Nanotuning via local work function control: ethylene hydrogenation on supported Pt nanoclusters[J]. ACS Catalysis, 2020, 10(3): 1799-1809. |
14 | BO Zhenyu, Sol AHN, Alexander ARDAGH M, et al. Synthesis and stabilization of small Pt nanoparticles on TiO2 partially masked by SiO2 [J]. Applied Catalysis A: General, 2018, 551: 122-128. |
15 | LIN Lili, YAO Siyu, GAO Rui, et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation[J]. Nature Nanotechnology, 2019,14(4): 354-361. |
16 | Cunqin LYU, LIU Jianhong, GUO Yong, et al. Selective hydrogenation of 1,3-butadiene over single Pt1/Cu(111) model catalysts: a DFT study[J]. Applied Surface Science, 2019, 466: 946-955. |
17 | LOU Yang, WU Honglu, LIU Jingyue. Nanocarbon-edge-anchored high-density Pt atoms for 3-nitrostyrene hydrogenation: Strong metal-carbon interaction[J]. iScience, 2019, 13: 190-198. |
18 | BI Qingyuan, YUAN Xiaotao, LU Yue, et al. One-step high-temperature-synthesized single-atom platinum catalyst for efficient selective hydrogenation[J]. Research, 2020, 2020: 9140841. |
19 | HAN Aijuan, ZHANG Jian, SUN Wenming, et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation[J]. Nature Communications, 2019, 10(1): 3787. |
20 | LOU Yang, ZHAO Yi, LIU Hong, et al. Edge-confined Pt1/MoS2 single-atom catalyst promoting the selective activation of carbon-oxygen bond[J]. ChemCatChem, 2021, 13(12): 2783-2793. |
21 | MENG Ge, JI Kaiyue, ZHANG Wei, et al. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni3Fe intermetallic supported Pt single-atom site catalyst[J]. Chemical Science, 2021, 12(11): 4139-4146. |
22 | TIAN Shubo, WANG Bingxue, GONG Wangbing, et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation[J]. Nature Communications, 2021, 12(1): 3181. |
23 | CHEN Lifang, YU Yulv, KUWA Masako, et al. Insight into the formation mechanism of “unprotected” metal nanoclusters[J]. Acta Physico-Chimica Sinica, 2020, 36(1):1907008. |
24 | CHEN Yuan, LI Liya, ZHANG Long, et al. In situ formation of ultrafine Pt nanoparticles on surfaces of polyaniline nanofibers as efficient heterogeneous catalysts for the hydrogenation reduction of nitrobenzene[J]. Colloid and Polymer Science, 2018, 296(3): 567-574. |
25 | ZHANG Xiaomeng, LI Xiya, XIONG Wanfeng, et al. Ultrafine platinum nanoparticles derived from supramolecular crystal for catalytic hydrogenation of nitroarenes[J]. Acta Chimica Sinica, 2021, 79(2): 180. |
26 | WANG Qiang, WANG Xusheng, CHEN Chunhui, et al. Defective Pt nanoparticles encapsulated in mesoporous metal-organic frameworks for enhanced catalysis[J]. Chemical Communications, 2018, 54(64): 8822-8825. |
27 | XU Linlin, ZHANG Jingfei, XU Lin, et al. Immobilizing ultrafine PtNi nanoparticles within graphitic carbon nanosheets toward high-performance hydrogenation reaction[J]. ACS Omega, 2018, 3(12): 16436-16442. |
28 | XU Shilong, SHEN Shancheng, ZHAO Shuai, et al. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal-sulfur interaction[J]. Chemical Science, 2020, 11(30): 7933-7939. |
29 | HOU Shengli, DONG Jie, ZHU Zihao, et al. Size-tunable ultrafine Pt nanoparticles in soluble metal-organic cages: displaying highly stereoselective hydrogenation of α-pinene[J]. Chemistry of Materials, 2020, 32(16): 7063-7069. |
30 | SHAN Junjun, WANG Hui, YOO Pilsun, et al. Facile synthesis of Pt carbide nanomaterials and their catalytic applications[J]. ACS Materials Letters, 2021, 3(2): 179-186. |
31 | ZHANG Wenlei, JI Wenlan, LI Linjie, et al. Exploring the fundamental roles of functionalized ligands in platinum@metal-organic framework catalysts[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52660-52667. |
32 | TONG Tao, LIU Xiaohui, GUO Yong, et al. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol[J]. Journal of Catalysis, 2018, 365: 420-428. |
33 | Päivi MÄKI-ARVELA, MURZIN Dmitry Yu. Effect of metal particle shape on hydrogen assisted reactions[J]. Applied Catalysis A: General, 2021, 618: 118140. |
34 | OHYAMA Junya, KATO Sosuke, MACHIDA Masato, et al. Shape control preparation of supported platinum nano-octahedra by ethylene treatment for enhancement of selective hydrogenation of cinnamaldehyde[J]. Chemistry Letters, 2019, 48(10): 1203-1205. |
35 | MIAO Hui, HU Shiwei, MA Kelong, et al. Synthesis of PtCo nanoflowers and its catalytic activity towards nitrobenzene hydrogenation[J]. Catalysis Communications, 2018, 109: 33-37. |
36 | YUAN Kuo, SONG Tianqun, WANG Dawei, et al. Effective and selective catalysts for cinnamaldehyde hydrogenation: hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro-and mesoporous polymers[J]. Angewandte Chemie International Edition, 2018, 130(20): 5810-5815. |
37 | WANG Qishun, LI Junqi, WANG Xiao, et al. Surfactant-guided synthesis of porous Pt shells with ordered tangential channels, coated on Pd nanostructures, and their enhanced catalytic activities[J]. Chemistry-A European Journal, 2018, 24(58): 15649-15655. |
38 | SHESTERKINA Anastasiya A, KUSTOV Leonid M, STREKALOVA Anna A, et al. Heterogeneous iron-containing nanocatalysts-promising systems for selective hydrogenation and hydrogenolysis[J]. Catalysis Science & Technology, 2020, 10(10): 3160-3174. |
39 | REDINA Elena A, KIRICHENKO Olga A, SHESTERKINA Anastasiya A, et al. Unusual behavior of bimetallic nanoparticles in catalytic processes of hydrogenation and selective oxidation[J]. Pure and Applied Chemistry, 2020, 92(7): 989-1006. |
40 | Insoo RO, ARAGAO Isaias B, BRENTZEL Zachary J, et al. Intrinsic activity of interfacial sites for Pt-Fe and Pt-Mo catalysts in the hydrogenation of carbonyl groups[J]. Applied Catalysis B Environmental, 2018, 231: 182-190. |
41 | MAWARNIS Elvy Rahmi, UMAR Akrajas ALI, TOMITORI Masahiko, et al. Hierarchical bimetallic AgPt nanoferns as high-performance catalysts for selective acetone hydrogenation to isopropanol[J]. ACS Omega, 2018, 3(9): 11526-11536. |
42 | LEDESMA Brenda, Juliana JUÁREZ, Jaime MAZARÍO, et al. Bimetallic platinum/iridium modified mesoporous catalysts applied in the hydrogenation of HMF[J]. Catalysis Today, 2021, 360: 147-156. |
43 | DONG Xiao, ZHENG Peng, ZHENG Aiguo, et al. Noble-metal efficient Pt-Ir-Co/SiO2 catalyst for selective hydrogenolytic ring opening of methylcyclopentane[J]. Catalysis Today, 2018, 316: 162-170. |
44 | YUAN Tao, LIU Derong, PAN Yue, et al. Magnetic anchored CoPt bimetallic nanoparticles as selective hydrogenation catalyst for cinnamaldehyde[J]. Catalysis Letters, 2019, 149(3): 851-859. |
45 | NING Liangmin, ZHANG Mingtao, LIAO Shengyun, et al. Differentiation of Pt-Fe and Pt-Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes[J]. ChemCatChem, 2021, 13(2): 704-711. |
46 | TAYLOR Martin J, BEAUMONT Simon K, ISLAM Mohammed J, et al. Atom efficient PtCu bimetallic catalysts and ultra dilute alloys for the selective hydrogenation of furfural[J]. Applied Catalysis B: Environmental, 2021, 284: 119737. |
47 | CHEN Xiuying, XIE Huilin, HU Wenbin, et al. Preparation of Pt-Al/MCM-41 catalyst for synthesis of organosilicon synergist[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(5): 933-941. |
48 | CHEN Xiao, CAO He, CHEN Xiaozhen, et al. Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18551-18561. |
49 | BARRALES-CORTÉS C A, PÉREZ-PASTENES H, PIÑA-VICTORIA J C, et al. Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent[J]. Topics in Catalysis, 2020, 63(5/6): 468-480. |
50 | DIETRICH Christine, Martin HÄHSLER, WANG Wu, et al. Designing structurally ordered Pt/Sn nanoparticles in ionic liquids and their enhanced catalytic performance[J]. ChemNanoMat, 2020, 6(12): 1854-1862. |
51 | TANIYA Keita, YU Chih Hao, TAKADO Hiromu, et al. Synthesis of bimetallic SnPt-nanoparticle catalysts for chemoselective hydrogenation of crotonaldehyde: Relationship between Sn x Pt y alloy phase and catalytic performance[J]. Catalysis Today, 2018, 303: 241-248. |
52 | TANIYA Keita, TAKADO Hiromu, ITO Hiroaki, et al. Effect of Sn x Pt y alloy structures in SnPt bimetallic nanoparticle catalysts on catalytic activity for hydrogenation of acetic acid[J]. Journal of Chemical Engineering of Japan, 2020, 53(8): 383-388. |
53 | PAGIS Céline, MEUNIER Frédéric, SCHUURMAN Yves, et al. Demonstration of improved effectiveness factor of catalysts based on hollow single crystal zeolites[J]. ChemCatChem, 2018, 10(20): 4525-4529. |
54 | PENG Fangjun, XU Jie, ZENG Xianghui, et al. Metal-decorated Pickering emulsion for continuous flow catalysis[J]. Particle & Particle Systems Characterization, 2020, 37(1): 1900382. |
55 | KRISHNAMURTHY Chethana, LORI Oran, ELBAZ Lior, et al. First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2018, 9(9): 2229-2234. |
56 | HOU Fengjun, ZHAO Huahua, SONG Huanling, et al. Effect of impregnation strategy on catalytic hydrogenation behavior of PtCo catalysts supported on La2O2CO3 nanorods[J]. Journal of Rare Earths, 2018, 36(9): 965-973. |
57 | PENG Yuhan, GENG Zhigang, ZHAO Songtao, et al. Pt single atoms embedded in the surface of Ni nanocrystals as highly active catalysts for selective hydrogenation of nitro compounds[J]. Nano Letters, 2018, 18(6): 3785-3791. |
58 | WANG Yu, QIN Ruixuan, WANG Yongke, et al. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(Ⅲ)-OH-platinum interface[J]. Angewandte Chemie International Edition, 2020, 59(31): 12736-12740. |
59 | SALAHSHOURNIA Hossein, GHIACI Mehran. Pd-Pt/modified GO as an efficient and selective heterogeneous catalyst for the reduction of nitroaromatic compounds to amino aromatic compounds by the hydrogen source[J]. Applied Organometallic Chemistry, 2019, 33(4): e4832. |
60 | CAI Bingfeng, LI Zhijuan, ZHANG Zhenbo, et al. Agar-induced hollow porous carbon nanospheres anchored platinum for high-performance hydrogenation[J]. Chemosphere, 2020, 243: 125387. |
61 | HONG Zhe, WANG Xiaoxia, HUANG Fangtao, et al. Highly dispersed Pt nanoparticles in the Cs-modified X zeolite with enhancement for toluene side-chain alkylation with methanol[J]. Catalysis Science & Technology, 2021, 11(1): 92-96. |
62 | FU Wanlin, LI Zhihui, WANG Yunpeng, et al. Stabilizing 3nm-Pt nanoparticles in close proximity on rutile nanorods-decorated-TiO2 nanofibers by improving support uniformity for catalytic reactions[J]. Chemical Engineering Journal, 2020, 401: 126013. |
63 | MA Yanfu, ZHANG Xiaohui, CAO Lina, et al. Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms[J]. Catalysis Science & Technology, 2021, 11(8): 2844-2851. |
64 | LIU Cheng, LUO Wei, LIU Junhua, et al. Pt/ferric hydroxyphosphate: an effective catalyst for the selective hydrogenation of α, β-unsaturated aldehydes (ketones) into α, β-unsaturated alcohols[J]. Catalysis Letters, 2018, 148(2): 555-563. |
65 | KIM Kihoon, HIGAI Daisuke, HOU Xiaofan, et al. Production of normal paraffins with an even carbon number via selective hydrodeoxygenation of palm fatty acid distillate over Pt-Sn catalysts[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 2881-2889. |
66 | LIU S, TIAN J, YIN K, et al. Constructing fibril-in-tube structures in ultrathin CeO2-based nanofibers as the ideal support for stabilizing Pt nanoparticles[J]. Materials Today Chemistry, 2020, 17: 100333. |
67 | SHUMILOV Vladimir, KIRILIN Alexey, TOKAREV Anton, et al. Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique[J]. Catalysis Today, 2022, 383: 64-73. |
68 | LI Linxiu, XU Xuecheng. Preparation and catalytic performance of Pt/double helix polyaniline nanocomposites[J]. Soft Materials, 2020, 18(4): 421-431. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[4] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[5] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[6] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[10] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[11] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[12] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[13] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[14] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[15] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |