化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1728-1738.DOI: 10.16085/j.issn.1000-6613.2022-1176
张成松1(), 张静1,2, 龚斌1(), 李明洋1, 袁佳新1, 李宏业1
收稿日期:
2022-06-23
修回日期:
2022-09-19
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
龚斌
作者简介:
张成松(1996—),男,硕士研究生,研究方向为化工过程强化。E-mail:595311464@qq.com。
基金资助:
ZHANG Chengsong1(), ZHANG Jing1,2, GONG Bin1(), LI Mingyang1, YUAN Jiaxin1, LI Hongye1
Received:
2022-06-23
Revised:
2022-09-19
Online:
2023-04-25
Published:
2023-05-08
Contact:
GONG Bin
摘要:
为了研究工况对新型自吸射流柔性搅拌桨的影响,运用实验和单向流固耦合数值模拟分析了装置的搅拌功耗、搅拌桨应力分布和振动特性。结果表明,相同工况下柔性Rushton搅拌桨的功率准数比自吸射流柔性搅拌桨高121.93%,并随Reynolds数的提高而减小。自吸射流柔性搅拌桨在支架与桨叶连接处应力最高,在本文研究范围内最大应力低于材料的许用应力。对自吸射流柔性搅拌桨在静模态和预应力模态下的固有频率和振型进行对比分析,两种模态前8阶为弯曲型,后4阶为扭变型;与静模态相比,预应力模态下固有频率和振型最大值的最大偏差分别为0.25%和27.56%。随着搅拌桨的转速和介质运动黏度提高,搅拌桨预应力模态固有频率增大,但同阶固有频率增长比变化较小。自吸射流柔性搅拌桨搅拌效率优势明显,本研究为多种工况下搅拌桨的强度和稳定性提供基础数据。
中图分类号:
张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738.
ZHANG Chengsong, ZHANG Jing, GONG Bin, LI Mingyang, YUAN Jiaxin, LI Hongye. Vibration characteristics of self-priming jet flexible impeller[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738.
流体介质 | 介质运动黏度ν/m2·s-1 | 搅拌转速N/r·min-1 | 雷诺数Re |
---|---|---|---|
水 | 1.005×10-6 | 60~300 | 22392~111962 |
甘油质量分数70% | 1.943×10-5 | 120,240 | 2316.1,4632.1 |
甘油质量分数80% | 4.958×10-5 | 120 | 907.71 |
甘油质量分数90% | 1.771×10-4 | 120 | 254.13 |
甘油质量分数100% | 1.118×10-3 | 120 | 40.261 |
表1 流体物性参数及搅拌转速和雷诺数
流体介质 | 介质运动黏度ν/m2·s-1 | 搅拌转速N/r·min-1 | 雷诺数Re |
---|---|---|---|
水 | 1.005×10-6 | 60~300 | 22392~111962 |
甘油质量分数70% | 1.943×10-5 | 120,240 | 2316.1,4632.1 |
甘油质量分数80% | 4.958×10-5 | 120 | 907.71 |
甘油质量分数90% | 1.771×10-4 | 120 | 254.13 |
甘油质量分数100% | 1.118×10-3 | 120 | 40.261 |
阶数 | fd/Hz | fw/Hz | [(fw-fd)/fd]/% |
---|---|---|---|
第1阶 | 81.086 | 81.125 | 0.05 |
第2阶 | 81.094 | 81.192 | 0.12 |
第3阶 | 81.106 | 81.218 | 0.14 |
第4阶 | 81.129 | 81.283 | 0.19 |
第5阶 | 88.855 | 88.975 | 0.14 |
第6阶 | 88.889 | 89.098 | 0.24 |
第7阶 | 88.894 | 89.100 | 0.23 |
第8阶 | 88.912 | 89.131 | 0.25 |
第9阶 | 217.980 | 217.970 | -0.01 |
第10阶 | 218.200 | 218.250 | 0.02 |
第11阶 | 220.100 | 220.080 | -0.01 |
第12阶 | 220.350 | 220.430 | 0.04 |
表2 自吸射流柔性搅拌桨静模态和预应力模态前12阶固有频率结果比较(N=120r/min,介质为水)
阶数 | fd/Hz | fw/Hz | [(fw-fd)/fd]/% |
---|---|---|---|
第1阶 | 81.086 | 81.125 | 0.05 |
第2阶 | 81.094 | 81.192 | 0.12 |
第3阶 | 81.106 | 81.218 | 0.14 |
第4阶 | 81.129 | 81.283 | 0.19 |
第5阶 | 88.855 | 88.975 | 0.14 |
第6阶 | 88.889 | 89.098 | 0.24 |
第7阶 | 88.894 | 89.100 | 0.23 |
第8阶 | 88.912 | 89.131 | 0.25 |
第9阶 | 217.980 | 217.970 | -0.01 |
第10阶 | 218.200 | 218.250 | 0.02 |
第11阶 | 220.100 | 220.080 | -0.01 |
第12阶 | 220.350 | 220.430 | 0.04 |
阶数 | Ad/mm | Aw/mm | [(Aw-Ad)/Ad]/% |
---|---|---|---|
第1阶 | 1488.40 | 1689.30 | 13.50 |
第2阶 | 1334.20 | 1634.20 | 22.49 |
第3阶 | 1274.80 | 1626.10 | 27.56 |
第4阶 | 1380.00 | 1680.80 | 21.80 |
第5阶 | 1714.40 | 1714.40 | 0.00 |
第6阶 | 1554.70 | 1712.30 | 10.14 |
第7阶 | 1554.70 | 1714.90 | 10.30 |
第8阶 | 1714.60 | 1712.60 | -0.12 |
第9阶 | 923.00 | 885.68 | -4.04 |
第10阶 | 837.02 | 870.17 | 3.96 |
第11阶 | 878.82 | 882.53 | 0.42 |
第12阶 | 801.12 | 866.16 | 8.12 |
表3 自吸射流柔性搅拌桨静模态和预应力模态前12阶振型最大值结果比较(N=120r/min,介质为水)
阶数 | Ad/mm | Aw/mm | [(Aw-Ad)/Ad]/% |
---|---|---|---|
第1阶 | 1488.40 | 1689.30 | 13.50 |
第2阶 | 1334.20 | 1634.20 | 22.49 |
第3阶 | 1274.80 | 1626.10 | 27.56 |
第4阶 | 1380.00 | 1680.80 | 21.80 |
第5阶 | 1714.40 | 1714.40 | 0.00 |
第6阶 | 1554.70 | 1712.30 | 10.14 |
第7阶 | 1554.70 | 1714.90 | 10.30 |
第8阶 | 1714.60 | 1712.60 | -0.12 |
第9阶 | 923.00 | 885.68 | -4.04 |
第10阶 | 837.02 | 870.17 | 3.96 |
第11阶 | 878.82 | 882.53 | 0.42 |
第12阶 | 801.12 | 866.16 | 8.12 |
阶数 | fw120 | fw180 | fw240 | fw300 |
---|---|---|---|---|
第1阶 | 81.125 | 81.175 | 81.254 | 81.364 |
第2阶 | 81.192 | 81.242 | 81.322 | 81.425 |
第3阶 | 81.218 | 81.260 | 81.345 | 81.447 |
第4阶 | 81.283 | 81.325 | 81.410 | 81.517 |
第5阶 | 88.975 | 89.205 | 89.559 | 90.012 |
第6阶 | 89.098 | 89.297 | 89.632 | 90.014 |
第7阶 | 89.100 | 89.306 | 89.649 | 90.018 |
第8阶 | 89.131 | 89.337 | 89.677 | 90.080 |
第9阶 | 217.970 | 217.980 | 217.990 | 218.010 |
第10阶 | 218.250 | 218.260 | 218.280 | 218.310 |
第11阶 | 220.080 | 220.100 | 220.130 | 220.170 |
第12阶 | 220.430 | 220.450 | 220.480 | 220.530 |
表4 转速对搅拌桨固有频率的影响(介质为水) (Hz)
阶数 | fw120 | fw180 | fw240 | fw300 |
---|---|---|---|---|
第1阶 | 81.125 | 81.175 | 81.254 | 81.364 |
第2阶 | 81.192 | 81.242 | 81.322 | 81.425 |
第3阶 | 81.218 | 81.260 | 81.345 | 81.447 |
第4阶 | 81.283 | 81.325 | 81.410 | 81.517 |
第5阶 | 88.975 | 89.205 | 89.559 | 90.012 |
第6阶 | 89.098 | 89.297 | 89.632 | 90.014 |
第7阶 | 89.100 | 89.306 | 89.649 | 90.018 |
第8阶 | 89.131 | 89.337 | 89.677 | 90.080 |
第9阶 | 217.970 | 217.980 | 217.990 | 218.010 |
第10阶 | 218.250 | 218.260 | 218.280 | 218.310 |
第11阶 | 220.080 | 220.100 | 220.130 | 220.170 |
第12阶 | 220.430 | 220.450 | 220.480 | 220.530 |
阶数 | [(fw180-fw120)/fw120]/% | [(fw240-fw180)/fw180]/% | [(fw300-fw240)/fw240]/% |
---|---|---|---|
第1阶 | 0.062 | 0.097 | 0.135 |
第2阶 | 0.062 | 0.098 | 0.127 |
第3阶 | 0.052 | 0.105 | 0.125 |
第4阶 | 0.052 | 0.105 | 0.131 |
第5阶 | 0.258 | 0.397 | 0.506 |
第6阶 | 0.223 | 0.375 | 0.426 |
第7阶 | 0.231 | 0.384 | 0.412 |
第8阶 | 0.231 | 0.381 | 0.449 |
第9阶 | 0.005 | 0.005 | 0.009 |
第10阶 | 0.005 | 0.009 | 0.014 |
第11阶 | 0.009 | 0.014 | 0.018 |
第12阶 | 0.009 | 0.014 | 0.023 |
表5 转速增长范围对固有频率增长比的影响(介质为水)
阶数 | [(fw180-fw120)/fw120]/% | [(fw240-fw180)/fw180]/% | [(fw300-fw240)/fw240]/% |
---|---|---|---|
第1阶 | 0.062 | 0.097 | 0.135 |
第2阶 | 0.062 | 0.098 | 0.127 |
第3阶 | 0.052 | 0.105 | 0.125 |
第4阶 | 0.052 | 0.105 | 0.131 |
第5阶 | 0.258 | 0.397 | 0.506 |
第6阶 | 0.223 | 0.375 | 0.426 |
第7阶 | 0.231 | 0.384 | 0.412 |
第8阶 | 0.231 | 0.381 | 0.449 |
第9阶 | 0.005 | 0.005 | 0.009 |
第10阶 | 0.005 | 0.009 | 0.014 |
第11阶 | 0.009 | 0.014 | 0.018 |
第12阶 | 0.009 | 0.014 | 0.023 |
阶数 | fw0.7 | fw0.8 | fw0.9 | fw1.0 |
---|---|---|---|---|
第1阶 | 81.212 | 81.264 | 81.405 | 81.838 |
第2阶 | 81.240 | 81.276 | 81.418 | 81.857 |
第3阶 | 81.264 | 81.298 | 81.430 | 81.873 |
第4阶 | 81.308 | 81.338 | 81.452 | 81.893 |
第5阶 | 89.034 | 89.086 | 89.219 | 89.492 |
第6阶 | 89.053 | 89.097 | 89.226 | 89.504 |
第7阶 | 89.140 | 89.175 | 89.305 | 89.520 |
第8阶 | 89.159 | 89.198 | 89.320 | 89.529 |
第9阶 | 218.200 | 218.240 | 218.320 | 218.420 |
第10阶 | 218.250 | 218.310 | 218.430 | 218.590 |
第11阶 | 220.310 | 220.390 | 220.510 | 220.660 |
第12阶 | 220.520 | 220.610 | 220.720 | 220.850 |
表6 介质运动黏度对搅拌桨固有频率的影响(N=120r/min) (Hz)
阶数 | fw0.7 | fw0.8 | fw0.9 | fw1.0 |
---|---|---|---|---|
第1阶 | 81.212 | 81.264 | 81.405 | 81.838 |
第2阶 | 81.240 | 81.276 | 81.418 | 81.857 |
第3阶 | 81.264 | 81.298 | 81.430 | 81.873 |
第4阶 | 81.308 | 81.338 | 81.452 | 81.893 |
第5阶 | 89.034 | 89.086 | 89.219 | 89.492 |
第6阶 | 89.053 | 89.097 | 89.226 | 89.504 |
第7阶 | 89.140 | 89.175 | 89.305 | 89.520 |
第8阶 | 89.159 | 89.198 | 89.320 | 89.529 |
第9阶 | 218.200 | 218.240 | 218.320 | 218.420 |
第10阶 | 218.250 | 218.310 | 218.430 | 218.590 |
第11阶 | 220.310 | 220.390 | 220.510 | 220.660 |
第12阶 | 220.520 | 220.610 | 220.720 | 220.850 |
阶数 | [(fw0.8-fw0.7)/fw0.7]/% | [(fw0.9-fw0.8)/fw0.8]/% | [(fw1.0-fw0.9)/fw0.9]/% |
---|---|---|---|
第1阶 | 0.064 | 0.174 | 0.532 |
第2阶 | 0.044 | 0.175 | 0.539 |
第3阶 | 0.042 | 0.162 | 0.544 |
第4阶 | 0.037 | 0.140 | 0.541 |
第5阶 | 0.058 | 0.149 | 0.306 |
第6阶 | 0.049 | 0.145 | 0.312 |
第7阶 | 0.039 | 0.146 | 0.241 |
第8阶 | 0.044 | 0.137 | 0.234 |
第9阶 | 0.018 | 0.037 | 0.046 |
第10阶 | 0.027 | 0.055 | 0.073 |
第11阶 | 0.036 | 0.054 | 0.068 |
第12阶 | 0.041 | 0.050 | 0.059 |
表7 介质运动黏度增长范围对固有频率增长比的影响(N=120r/min)
阶数 | [(fw0.8-fw0.7)/fw0.7]/% | [(fw0.9-fw0.8)/fw0.8]/% | [(fw1.0-fw0.9)/fw0.9]/% |
---|---|---|---|
第1阶 | 0.064 | 0.174 | 0.532 |
第2阶 | 0.044 | 0.175 | 0.539 |
第3阶 | 0.042 | 0.162 | 0.544 |
第4阶 | 0.037 | 0.140 | 0.541 |
第5阶 | 0.058 | 0.149 | 0.306 |
第6阶 | 0.049 | 0.145 | 0.312 |
第7阶 | 0.039 | 0.146 | 0.241 |
第8阶 | 0.044 | 0.137 | 0.234 |
第9阶 | 0.018 | 0.037 | 0.046 |
第10阶 | 0.027 | 0.055 | 0.073 |
第11阶 | 0.036 | 0.054 | 0.068 |
第12阶 | 0.041 | 0.050 | 0.059 |
1 | 刘作华, 陶长元, 陈维, 等. Research progress of chaotic mixing in stirred tank[J]. 化工进展, 2010, 29(S1): 557-565. |
LIU Zuohua, TAO Changyuan, CHEN Wei, et al. Research progress of chaotic mixing in stirred tank[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 557-565. | |
2 | 刘宝庆, 张义堃, 刘景亮, 等. 新型同心双轴搅拌器功率与混合特性的数值模拟[J]. 化工学报, 2013, 64(4): 1135-1144. |
LIU Baoqing, ZHANG Yikun, LIU Jingliang, et al. Numerical simulation of power consumption and mixing characteristic in stirred vessel with novel coaxial mixer[J]. CIESC Journal, 2013, 64(4): 1135-1144. | |
3 | ZHENG Zhiyong, SUN Dongdong, LI Jing, et al. Improving oxygen transfer efficiency by developing a novel energy-saving impeller[J]. Chemical Engineering Research and Design, 2018, 130: 199-207. |
4 | 许言, 王健, 武永军, 等. 多叶片组合式搅拌桨釜内流动特性和混合性能研究[J]. 化工学报, 2020, 71(11): 4964-4970. |
XU Yan, WANG Jian, WU Yongjun, et al. Study on the flow characteristics and mixing performance of multi-blade combined agitator[J]. CIESC Journal, 2020, 71(11): 4964-4970. | |
5 | 邱发成, 刘作华, 刘仁龙, 等. 偏心射流-刚柔组合桨搅拌器内混沌混合行为研究[J]. 化工学报, 2018, 69(2): 618-624. |
QIU Facheng, LIU Zuohua, LIU Renlong, et al. Chaotic mixing performance in rigid-flexible impeller stirred tank with eccentric air jet[J]. CIESC Journal, 2018, 69(2): 618-624. | |
6 | DEGAWA T, UNO K, UCHIYAMA T. Mixing of density-stratified fluid in a cylindrical tank by a diagonal jet[J]. Journal of Energy and Power Engineering, 2018, 12(9): 436-443. |
7 | MANJULA P, KALAICHELVI P, SHANAWASKHAN C, et al. Effect of radial angle on mixing time for a double jet mixer[J]. Asia‐Pacific Journal of Chemical Engineering, 2010, 5(3): 544-551. |
8 | 刘作华, 宁伟征, 孙瑞祥, 等. 偏心空气射流双层桨搅拌反应器流场结构的分形特征[J]. 化工学报, 2011, 62(3): 628-635. |
LIU Zuohua, NING Weizheng, SUN Ruixiang, et al. Fractal flow structure in eccentric air jet-stirred reactor with double impeller[J]. CIESC Journal, 2011, 62(3): 628-635. | |
9 | ESMAEELZADE G, MOSHAMMER K, FERNANDES R, et al. Numerical study of the mixing inside a jet stirred reactor using large eddy simulations[J]. Flow, Turbulence and Combustion, 2019, 102(2): 331-343. |
10 | STEFANIE B, W-B DIRK. CFD analysis of interphase mass transfer and energy dissipation in a milliliter-scale stirred-tank reactor for filamentous microorganisms[J]. Chemical Engineering Research and Design, 2014, 92(2): 240-248. |
11 | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
YANG Fengling, ZHANG Cuixun, SU Tenglong. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625. | |
12 | LIANG Yangyang, SHI Daien, XU Bohang, et al. Turbulent flow field in a stirred vessel agitated by an impeller with flexible blades[J]. AIChE Journal, 2018, 64(11): 4148-4161. |
13 | KUMAR R, GOEL N, HOJAMBERDIEV M, et al. Transition metal dichalcogenides-based flexible gas sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111875. |
14 | 刘作华, 曾启琴, 王运东, 等. 柔性桨强化搅拌槽中高黏度流体层流混合的研究[J]. 中国科技论文, 2012, 7(3): 185-189. |
LIU Zuohua, ZENG Qiqin, WANG Yundong, et al. Laminar mixing enhanced by flexible impeller in high-viscosity fluid stirred tank[J]. China Sciencepaper, 2012, 7(3): 185-189. | |
15 | KIM Jaewon, Woojeong SIM, CHUNG Jintai. Modal characteristics and dynamic stability of a whirling rotor with flexible blades[J]. Applied Mathematical Modelling, 2021, 89: 1-18. |
16 | HOERNER S, KÖSTERS I, VIGNAL L, et al. Cross-flow tidal turbines with highly flexible blades—Experimental flow field investigations at strong fluid-structure interactions[J]. Energies, 2021, 14(4): 797. |
17 | 赵梦雪, 王豪, 邢安安, 等. 一种浮动式自吸射流搅拌装置: CN111298706A[P]. 2020-06-19. |
ZHAO Mengxue, WANG Hao, XING Anan, et al. A floating self-priming jet stirring device: CN111298706A[P]. 2020-06-19. | |
18 | 龚斌, 张成松, 袁佳新, 等. 一种自吸射流柔性组合搅拌装置: CN113083081A[P]. 2021-07-09. |
GONG Bin, ZHANG Chengsong, YUAN Jiaxin, et al. A self-priming jet flexible combined stirring device: CN113083081A[P]. 2021-07-09. | |
19 | YONG T H, CHAN H B, DOL S S, et al. The flow dynamics behind a flexible finite cylinder as a flexible agitator[J]. IOP Conference Series: Materials Science and Engineering, 2017, 206: 012033. |
20 | 范永将, 李冬红, 李彤霞, 等. 复合乳化体系合成丁腈橡胶3604性能的主要影响因素[J]. 合成橡胶工业, 2012, 35(1): 75-77. |
FAN Yongjiang, LI Donghong, LI Tongxia, et al. Main influencing factors of properties of nitrile rubber 3604 synthesized by complex emulsion system[J]. China Synthetic Rubber Industry, 2012, 35(1): 75-77. | |
21 | 苏腾龙. 柔性桨流场特性的流固耦合数值模拟和实验研究[D]. 济南: 山东大学, 2018. |
SU Tenglong. Fluid-solid interaction simulation and experimental study on the flow field characteristics of flexible-blade impeller[D]. Jinan: Shandong University, 2018. | |
22 | 朱俊, 周政霖, 刘作华, 等. 刚柔组合搅拌桨强化流体混合的流固耦合行为[J]. 化工学报, 2015, 66(10): 3849-3856. |
ZHU Jun, ZHOU Zhenglin, LIU Zuohua, et al. Fluid-structure interaction in liquid mixing intensified by flexible-rigid impeller[J]. CIESC Journal, 2015, 66(10): 3849-3856. | |
23 | 黎义斌, 梁开一, 李正贵. 基于流固耦合的斜轴式搅拌器水力性能数值分析[J]. 过程工程学报, 2020, 20(12): 1424-1431. |
LI Yibin, LIANG Kaiyi, LI Zhenggui. Numerical analysis of hydraulic performance of tilted shaft agitator based on fluid-structure interaction[J]. The Chinese Journal of Process Engineering, 2020, 20(12): 1424-1431. | |
24 | 张守汉, 应婵娟, 马莉莉. 门尼黏度对丁腈橡胶拉伸性能的影响[J]. 弹性体, 2019, 29(5): 26-28. |
ZHANG Shouhan, YING Chanjuan, MA Lili. Effect of Mooney viscosity on tensile property of nitrile rubber[J]. China Elastomerics, 2019, 29(5): 26-28. | |
25 | 王玥, 盛德仁, 陈坚红, 等. 国产300MW汽轮机叶片模态分析与故障识别[J]. 汽轮机技术, 2003, 45(3): 168-169. |
WANG Yue, SHENG Deren, CHEN Jianhong, et al. Modal analysis and failure identity of blade experiment of home-made 300MW turbine[J]. Turbine Technology, 2003, 45(3): 168-169. | |
26 | ELHAMI M R, NAJAFI M R, TASHAKORI BAFGHI M. Vibration analysis and numerical simulation of fluid-structure interaction phenomenon on a turbine blade[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 1-24. |
27 | 刘欣. 柔性Rushton搅拌桨的振动特性研究[D]. 济南: 山东大学, 2020. |
LIU Xin. Study on vibration characteristics of flexible-blade Rushton impeller[D]. Jinan: Shandong University, 2020. | |
28 | GAGNON M, DOLLON Q, NICOLLE J, et al. Operational modal analysis of francis turbine runner blades using transient measurements[J]. IOP Conference Series: Earth and Environmental Science, 2021, 774(1): 012082. |
29 | 栾德玉, 张盛峰, 郑深晓, 等. 基于流固耦合的错位桨搅拌假塑性流体动力学特性[J]. 化工学报, 2017, 68(6): 2328-2335. |
LUAN Deyu, ZHANG Shengfeng, ZHENG Shenxiao, et al. Dynamic characteristics of impeller of perturbed six-bent-bladed turbine in pseudoplastic fluid based on fluid-structure interaction[J]. CIESC Journal, 2017, 68(6): 2328-2335. | |
30 | 顾乡, 马鑫, 刘新卫, 等. 四斜叶搅拌桨的固有频率测试与分析[J]. 北京化工大学学报(自然科学版), 2006, 33(5): 103-105. |
GU Xiang, MA Xin, LIU Xinwei, et al. Natural frequency measurement and analysis of a pitched-blade turbine[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2006, 33(5): 103-105. | |
31 | 赵宏飞, 马宏忠, 李凯, 等. 电力变压器油箱固有频率测试及其影响分析[J]. 电力自动化设备, 2013, 33(11): 165-169. |
ZHAO Hongfei, MA Hongzhong, LI Kai, et al. Test and analysis of inherent frequency of power transformer tank[J]. Electric Power Automation Equipment, 2013, 33(11): 165-169. | |
32 | 张福荣. 基于CAD和有限元方法的齿轮模态分析[J]. 科技通报, 2013, 29(9): 93-97. |
ZHANG Furong. The modal analysis of gear based on CAD & finite element[J]. Bulletin of Science and Technology, 2013, 29(9): 93-97. | |
33 | 杨锋苓, 曹明见, 张翠勋, 等. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986. |
YANG Fengling, CAO Mingjian, ZHANG Cuixun, et al. Vibration characteristics of the flexible-blade Rushton impeller[J]. CIESC Journal, 2021, 72(4): 1975-1986. | |
34 | 戚振. 基于流固耦合的搅拌反应器机械特性研究[D]. 青岛: 山东科技大学, 2014. |
QI Zhen. Research on the mechanical properties of the stirred reactor based on fluid-structure interaction[D]. Qingdao: Shandong University of Science and Technology, 2014. | |
35 | 徐自力, 艾松. 叶片结构强度与振动[M]. 西安: 西安交通大学出版社, 2018. |
XU Zili, AI Song. Blade structure strength and vibration[M]. Xi’an: Xi’an Jiaotong University Press, 2018. | |
36 | 骆天舒, 戴韧. 整体式向心叶轮模态的有限元分析[J]. 内燃机工程, 2005, 26(1): 77-80. |
LUO Tianshu, DAI Ren. Modal analysis of integrated radial inflow impeller with finite element method[J]. Chinese Internal Combustion Engine Engneering, 2005, 26(1): 77-80. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[6] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[7] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[8] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[9] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[12] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[13] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[14] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[15] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |