1 |
付畅, 吴亦枫, 章伊宁, 等. 汽车发动机余热采暖系统研究[J]. 节能, 2020, 39(9): 54-57.
|
|
FU Chang, WU Yifeng, ZHANG Yining, et al. Study on the heating system of vehicle for combustion heat recovery[J]. Energy Conservation, 2020, 39(9): 54-57.
|
2 |
翟绍春, 于士博, 李云虹, 等. 可变换热量冷却液温控系统设计与开发[J]. 机电工程技术, 2020, 49(3): 81-83.
|
|
ZHAI Shaochun, YU Shibo, LI Yunhong, et al. Design and development of the engine coolant temperature control system with variable heat exchange[J]. Mechanical & Electrical Engineering Technology, 2020, 49(3): 81-83.
|
3 |
PESARAN A, VLAHINOS A, STUART T. Cooling and preheating of batteries in hybrid electric vehicles[C]// The 6th ASME-JSME Thermal Engineering Joint Conference, 2003.
|
4 |
RAMADASS P, HARAN B L, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures[J]. Journal of Power Sources, 2002, 112(2): 614-620.
|
5 |
闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素研究[J/OL]. 北京航空航天大学学报, 2022. DOI:10.13700/j.bh.1001-5965.2021.0458 .
|
|
YAN Xiaoyu, ZHOU Sida, LU Yu, et al. Research on degradation mechanism and influencing factors on lithium-ion batteries [J]. Journal of Beijing University of Aeronautics and Astro, 2022. DOI: 10.13700/j.bh.1001-5965.2021.0458 .
|
6 |
BESSELINK I J M, HEREIJGERS J A J, OORSCHOT P F, et al. Evaluation of 20000km driven with a battery electric vehicle[C]// EEVC European Electric Vehicle Congress, 2011.
|
7 |
邓云. 航空运输锂离子电池热失控多米诺效应研究[D]. 天津: 中国民航大学, 2020.
|
|
DENG Yun. Study on thermal runaway domino effect of lithium-ion batteries in air transportation[D]. Tianjin: Civil Aviation University of China, 2020.
|
8 |
朱晓庆,王震坡, WANG Hsin,等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118.
|
|
ZHU Xiaoqing, WANG Zhenpo, WANG Hsin, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118.
|
9 |
DENG Yuanwang, FENG Changli, Jiaqing E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium-ion battery system: a review[J]. Applied Thermal Engineering, 2018, 142: 10-29.
|
10 |
吴青平,徐荣吉,王瑞祥,等. 平板回路型脉动热管启动阶段传热特性的试验研究[J]. 制冷与空调, 2020, 20(7): 17-21.
|
|
WU Qingping, XU Rongji, WANG Ruixiang, et al. An experimental study on operating performance of flat-plate closed-loop pulsating heat pipe in start-up period[J]. Refrigeration and Air-Conditioning, 2020, 20(7): 17-21.
|
11 |
SWANEPOEL G. Thermal management of hybrid electrical vehicles using heat pipes[D]. Stellenbosch: Department of Mechanical Engineering University of Stellenbosch, 2001.
|
12 |
RAO Zhonghao, HUO Yutao, LIU Xinjian. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26.
|
13 |
WANG Qingchao, RAO Zhonghao, HUO Yutao, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102: 9-16.
|
14 |
CHI Riguang, CHUNG Wonsik, Seokho RHI. Thermal characteristics of an oscillating heat pipe cooling system for electric vehicle Li-ion batteries[J]. Energies, 2018, 11(3): 655.
|
15 |
PATEL V M, GAURAV, MEHTA H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577.
|
16 |
HAO Tingting, MA Hongbin, MA Xuehu. Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluids[J]. International Journal of Heat and Mass Transfer, 2019, 131: 109-120.
|
17 |
崔文宇, 蒋振, 郝婷婷, 等. 液态金属微液滴脉动热管的传热性能[J]. 化工进展, 2022, 41(1): 95-103.
|
|
CUI Wenyu, JIANG Zhen, HAO Tingting, et al. Heat transfer performance of oscillating heat pipe with micro-nano droplets of liquid metal[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 95-103.
|
18 |
SHI Saiyan, CUI Xiaoyu, HAN Hua, et al. A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures[J]. Applied Thermal Engineering, 2016, 102: 1219-1227.
|
19 |
ZHU Yue, CUI Xiaoyu, HAN Hua, et al. The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures[J]. International Journal of Heat & Mass Transfer, 2014, 77: 834-842.
|
20 |
MA H B, WILSON C, BORGMEYER B, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe[J]. Applied Physics Letters, 2006, 88(14): 143116.
|
21 |
XU Yanyan, XUE Yanqi, QI Hong, et al. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119727.
|
22 |
张超. 非共沸混合工质脉动热管流动及传热特性研究[D]. 北京: 北京建筑大学, 2019.
|
|
ZHANG Chao. Study on flow and heat transfer characteristics of pulsating heat pipe with zeotropic mixtures[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019.
|
23 |
XU Rongji, ZHANG Chao, CHEN Hao, et al. Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures[J]. International Journal of Heat and Mass Transfer, 2019, 137: 31-41.
|
24 |
HAN Z H, YANG B. Thermophysical characteristics of water-in-FC72 nanoemulsion fluids[J]. Applied Physics Letters, 2008, 92(1): 013118.
|
25 |
屈健, 吴慧英. 水/FC-72纳米乳液振荡热管传热特性研究[J]. 高校化学工程学报, 2012, 26(2): 210-215.
|
|
QU Jian, WU Huiying. Experimental investigation on the heat transfer performance of a pulsating heat pipe charged with water/FC-72 nanoemulsion fluids[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2): 210-215.
|
26 |
董志浩. 聚合物/表面活性剂混合体系对水包油乳液形成和稳定性的影响[D]. 济南: 山东大学, 2017.
|
|
DONG Zhihao. Synergism of polymer/surfactant mixed system on the formation and stability of the oil-in-water emulsion[D]. Jinan: Shandong University, 2017.
|
27 |
KHAN M Y, SAMANTA A, OJHA K, et al. Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties[J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(5): 579-585.
|
28 |
TACHON L, GUIGNARD S. An accurate optical method for the measurement of contact angle and interface shape of evaporative thin liquids films[J]. Experimental Thermal and Fluid Science, 2018, 90: 66-75.
|
29 |
ZHOU Mingzheng, XIA Guodong, LI Jian, et al. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions[J]. Experimental Thermal and Fluid Science, 2012, 36: 22-29.
|
30 |
张志庆, 王芳, 任超. 电导法与最大压差法测表面活性剂临界胶束浓度实验比较[J]. 实验技术与管理, 2013, 30(1): 44-45.
|
|
ZHANG Zhiqing, WANG Fang, REN Chao. Experimental comparison of critical micelle concentration of surfactant by conductivity method and max bubble pressure method[J]. Experimental Technology and Management, 2013, 30(1): 44-45.
|
31 |
张冉冉, 杜玉兰, 范培浩, 等. 油包水乳化体系稳定性的研究与分析[J]. 日用化学工业, 2020, 50(8): 566-571.
|
|
ZHANG Ranran, DU Yulan, FAN Peihao, et al. Study and analysis on the stability of water-in-oil emulsions[J]. China Surfactant Detergent & Cosmetics, 2020, 50(8): 566-571.
|
32 |
夏纪鼎, 朱震和. 表面活性物基础物理化学 第三讲 表面活性物对乳状液稳定性的影响及其HLB值[J]. 日用化学工业, 1979, 9(4): 52-60.
|
|
XIA Jiding, ZHU Zhenhe. Basic physical chemistry of surfactants, lecture 3, influence of surfactants on emulsion stability and its HLB value[J]. China Surfactant Detergent & Cosmetics, 1979, 9(4): 52-60.
|
33 |
FRIBERG S, MANDELL L. Phase equilibria and their influence on the properties of emulsions[J]. Journal of the American Oil Chemists Society, 1970, 47(5): 149-152.
|
34 |
YANG B, HAN Z H. Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids[J]. Applied Physics Letters, 2006, 88(26): 261914.
|
35 |
NASIR F M, ABDULLAH M Z, ISMAIL M A. Experimental investigation of water-cooled heat pipes in the thermal management of lithium-ion EV batteries[J]. Arabian Journal for Science and Engineering, 2019, 44(9): 7541-7552.
|
36 |
WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60.
|