1 |
冯权, 邢新会, 刘则华. 以剩余污泥减量化为目标的废水生物处理技术研究进展[J]. 化工进展, 2004, 23(8): 832-836.
|
|
DENG Quan, XING Xinhui, LIU Zehua. Mini review on wastewater treatment technology aimed at minimization of excess sludge[J]. Chemical Industry and Engineering Progress, 2004, 23(8): 832-836.
|
2 |
CHEN Guanyi, WANG Xutong, LI Jiao, et al. Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge: a case study in China[J]. Science of The Total Environment, 2019, 647: 1433-1443.
|
3 |
杨露露, 岳正波, 陈天虎, 等. 针铁矿对城市生活垃圾有机组分厌氧发酵的影响[J]. 环境科学, 2014, 35(5): 1988-1993.
|
|
YANG Lulu, YUE Zhengbo, CHEN Tianhu, et al. Influence of goethite on anaerobic fermentation of organic fraction of municipal solid waste (OFMSW)[J]. Environmental Science, 2014, 35(5): 1988-1993.
|
4 |
JIN Chenxi, SUN Shiqiang, YANG Dianhai, et al Anaerobic digestion : an alternative resource treatment option for food waste in China[J]. Science of The Total Environment, 2021, 779: 146397.
|
5 |
GUO Bing, HU Jiawei, ZHANG Jingsi, et al. Enhanced methane production from waste activated sludge by potassium ferrate combined with ultrasound pretreatment[J]. Bioresource Technology, 2021, 341: 125841.
|
6 |
ROMIO C, KOFOED M V W, MOLLER H B. Digestate post-treatment strategies for additional biogas recovery: a review[J]. Sustainability, 2021, 13(16): 9295.
|
7 |
ZHUANG Li, TANG Jia, WANG Yueqiang, et al. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation[J]. Journal of Hazardous Materials, 2015, 293: 37-45.
|
8 |
YU Qing, YANG Yafei, WANG Mingwei, et al. Enhancing anaerobic digestion of kitchen wastes via combining ethanol-type fermentation with magnetite: potential for stimulating secretion of extracellular polymeric substances[J]. Waste Management, 2021, 127: 10-17.
|
9 |
KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654.
|
10 |
CAROLINA C V, ROSSETTI S, FAZI S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13): 7536-7543.
|
11 |
KATO S, HASHIMOTO K, WATANABE K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 10042-10046.
|
12 |
YUE Zhengbo, MA Ding, WANG Jin, et al. Goethite promoted anaerobic digestion of algal biomass in continuous stirring-tank reactors[J]. Fuel, 2015, 159: 883-886.
|
13 |
WANG Mingwei, ZHAO Zhiqiang, ZHANG Yaobin. Sustainable strategy for enhancing anaerobic digestion of waste activated sludge: driving dissimilatory iron reduction with fenton sludge[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2220-2230.
|
14 |
BAEK G, KIM J, LEE C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor[J]. Bioresource Technology, 2014, 166: 596-601.
|
15 |
BAEK G, KIM J, CHO K, et al. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10355-10366.
|
16 |
LOVLEY D R, PHILLIPS E J P. Novel mode of microbial energy metabolism; organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480.
|
17 |
廖小兵, 许玫英, 罗慧东, 等. 厌氧氨氧化在污水处理中的研究进展[J]. 微生物学通报, 2010, 37(11): 1679-1684.
|
|
LIAO Xiaobing, XU Meiying, LUO Huidong, et al. The research progress of anaerobic ammonium oxidation in wastewater biotreatment[J]. Microbiology China, 2010, 37(11): 1679-1684.
|
18 |
朱葛夫, 张净瑞, 刘超翔, 等. 厌氧氨氧化工艺的启动及有机物浓度对其影响研究[J]. 环境工程, 2016, 34(2): 27-32.
|
|
ZHU Gefu, ZHANG Jingrui, LIU Chaoxiang, et al. Study on startup of anaerobic ammonia oxidation and the effect of COD concentration[J]. Environmental Engineering, 2016, 34(02): 27-32.
|
19 |
YANG Yafei, XIAO Cancan, LU Jianhui, et al. Fe( Ⅲ )/Fe( Ⅱ ) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor[J]. Water Research, 2020, 172: 115528.
|
20 |
YANG Yafei, XIAO Cancan, YU Qing, et al. Using Fe( Ⅱ )/Fe( Ⅲ ) as catalyst to drive a novel anammox process with no need of anammox bacteria[J]. Water Research, 2021, 189: 116626.
|
21 |
DING Bangjing, LI Zhengkui, QIN Yunbin. Nitrogen loss from anaerobic ammonium oxidation coupled to iron( Ⅲ ) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231: 379-386.
|
22 |
姚敦璠, 陈天虎, 王进, 等. 天然和水热合成针铁矿对有机物厌氧分解释放CH4的影响[J]. 环境科学, 2013, 34(2):635-641.
|
|
YAO Dunfan, CHEN Tianhu, WANG Jin, et al. Effect of natural and hydrothermal synthetic goethite on the release of methane in the anaerobic decomposition process of organic matter[J]. Environmental Science, 2013, 34(2): 635-641.
|
23 |
HUANG S, JAFFE P R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. PLOS ONE, 2018, 13(4): e194007.
|
24 |
赵智强. 厌氧甲烷化中互养微生物种间直接电子传递的构建与强化[D]. 大连: 大连理工大学, 2017.
|
|
ZHAO Zhiqiang. Establishment and enhancement of direct interspecies electron transfer between syntrophic microorganisms during anaerobic methanogenesis[D]. Dalian: Dalian University of Technology, 2017.
|
25 |
BAEK G, KIM J, LEE C. A review of the effects of iron compounds on methanogenesis in anaerobic environments[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109282.
|
26 |
LOVLEY D R, PHILLIPS E J. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Appl. Environ. Microbiol., 1987, 53(7): 1536-1540.
|
27 |
ZHAO Zisheng, LI Yang, ZHAO Zhiqiang, et al. Effects of dissimilatory iron reduction on acetate production from the anaerobic fermentation of waste activated sludge under alkaline conditions[J]. Environmental Research, 2020, 182: 109045.
|
28 |
YANG Yafei, JIN Zhen, QUAN Xie, et al. Transformation of nitrogen and iron species during nitrogen removal from wastewater via feammox by adding ferrihydrite[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14394-14402.
|
29 |
DING Longjun, AN Xinli, LI Shun, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647.
|
30 |
YANG Yafei, ZHAO Zhiqiang, ZHANG Yaobin. Anaerobic ammonium removal pathway driven by the Fe( Ⅱ )/Fe( Ⅲ ) cycle through intermittent aeration[J]. Environmental Science & Technology, 2021, 55(11): 7615-7623.
|
31 |
LOVLEY D R, PHILLIPS E. Organic matter mineralization with reduction of Fe( Ⅲ ) in anaerobic sediments[J]. Applied and Environmental Microbiology, 1986, 51(4): 683-689.
|
32 |
LOVLEY D R, PHILLIPS E J. Requirement for a microbial consortium to completely oxidize glucose in Fe( Ⅲ )-reducing sediments[J]. Applied & Environmental Microbiology, 1989, 55(12): 3234.
|