1 |
WANG Shaofei, LI Xueqin, WU Hong, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890.
|
2 |
DU Naiying, PARK Ho Bum, DAL-CIN Mauro M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy & Environmental Science, 2012, 5(6): 7306-7322.
|
3 |
KIM Seungju, LEE Young Moo. Rigid and microporous polymers for gas separation membranes[J]. Progress in Polymer Science, 2015, 43: 1-32.
|
4 |
CHENG Youdong, YING Yunpan, JAPIP Susilo, et al. Advanced porous materials in mixed matrix membranes[J]. Advanced Materials, 2018, 30(47): 1802401.
|
5 |
陈丙晨, 徐积斌, 万超, 等. 用于CO2/CH4分离的cPIM-1/ZIF-8混合基质膜的制备[J]. 化工进展, 2020, 39(9): 3518-3524.
|
|
CHEN Bingchen, XU Jibin, WAN Chao, et al. ZIF-8 filled carboxylated polymer of intrinsic microporosity membranes for CO2/CH4 separation[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3518-3524.
|
6 |
BAKER Richard W, KAAEID Lokhandwala. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121.
|
7 |
BERNARDO P, DRIOLI E, GOLEMME G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663.
|
8 |
陈艺飞, 王佳铭, 阮雪华, 等. 聚离子液体二氧化碳分离膜材料的研究进展[J]. 化工学报, 2021, 72(12): 6062-6072.
|
|
CHEN Yifei, WANG Jiaming, RUAN Xuehua, et al. Research progress in poly(ionic liquids) materials for CO2 membrane separation[J]. CIESC Journal, 2021, 72(12): 6062-6072.
|
9 |
ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.
|
10 |
CARTA Mariolino, Richard MALPASS-EVANS, CROAD Matthew, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307.
|
11 |
PARK Ho Bum, KAMCEV Jovan, ROBESON Lloyd M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
|
12 |
EBADI AMOOGHIN Abtin, MASHHADIKHAN Samaneh, SANAEEPUR Hamidreza, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation[J]. Progress in Materials Science, 2019, 102: 222-295.
|
13 |
DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310.
|
14 |
洪宗平, 叶楚梅, 吴洪, 等. 天然气脱碳技术研究进展[J]. 化工学报, 2021, 72(12): 6030-6048.
|
|
HONG Zongping, YE Chumei, WU Hong, et al. Research progress in CO2 removal technology of natural gas[J]. CIESC Journal, 2021, 72(12): 6030-6048.
|
15 |
侯蒙杰, 张新儒, 王永洪, 等. 聚乙烯胺/埃洛石纳米管混合基质膜的制备及其CO2/N2分离[J]. 化工学报, 2018, 69(9): 4106-4113.
|
|
HOU Mengjie, ZHANG Xinru, WANG Yonghong, et al. Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation[J]. CIESC Journal, 2018, 69(9): 4106-4113.
|
16 |
Aleksandra WOLIŃSKA-GRABCZYK, Magdalena WÓJTOWICZ, JANKOWSKI Andrzej, et al. Synthesis, characterization, and gas permeation properties of thermally rearranged poly(hydroxyimide)s filled with mesoporous MCM-41 silica[J]. Polymer, 2018, 158: 32-45.
|
17 |
Klaudia NOCOŃ-SZMAJDA, Aleksandra WOLIŃSKA-GRABCZYK, JANKOWSKI Andrzej, et al. Gas transport properties of mixed matrix membranes based on thermally rearranged poly(hydroxyimide)s filled with inorganic porous particles[J]. Separation and Purification Technology, 2020, 242: 116778.
|
18 |
KIM Seungju, HOU Jue, WANG Yuqi, et al. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7668-7674.
|
19 |
YANG Kai, DAI Yan, ZHENG Wenji, et al. ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf[J]. Separation and Purification Technology, 2019, 214: 87-94.
|
20 |
ZHENG Wenji, DING Rui, YANG Kai, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214: 111-119.
|
21 |
DING Rui, DAI Yan, ZHENG Wenji, et al. Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway[J]. Chemical Engineering Journal, 2021, 414: 128807.
|
22 |
杨凯, 阮雪华, 代岩, 等. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336.
|
|
YANG Kai, RUAN Xuehua, DAI Yan, et al. Optimized fabrication of mixed matrix membranes based on amino-MIL-101(Cr) for highly efficient CO2 separation[J]. CIESC Journal, 2020, 71(1): 329-336.
|
23 |
CAVKA Jasmina Hafizovic, Søren JAKOBSEN, OLSBYE Unni, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
|
24 |
KATZ Michael J, BROWN Zachary J, COLÓN Yamil J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82): 9449-9451.
|
25 |
JIANG Xu, LI Songwei, HE Shanshan, et al. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture[J]. Journal of Materials Chemistry A, 2018, 6(31): 15064-15073.
|
26 |
AHMAD Mohd Zamidi, NAVARRO Marta, LHOTKA Miloslav, et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives[J]. Journal of Membrane Science, 2018, 558: 64-77.
|
27 |
VENNA Surendar R, LARTEY Michael, LI Tao, et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles[J]. Journal of Materials Chemistry A, 2015, 3(9): 5014-5022.
|
28 |
YANG Xiaochen, ZHENG Wenji, XI Yuan, et al. Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2021, 624: 119046.
|
29 |
WANG He, ZHENG Wenji, YANG Xiaochen, et al. Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation[J]. Separation and Purification Technology, 2021, 274: 119015.
|
30 |
WANG Zhenggong, REN Huiting, ZHANG Shenxiang, et al. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation[J]. Journal of Materials Chemistry A, 2017, 5(22): 10968-10977.
|
31 |
Nguyen TIEN-BINH, RODRIGUE Denis, KALIAGUINE Serge. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438.
|
32 |
GHASEMI ESTAHBANATI Ehsan, OMIDKHAH Mohammadreza, EBADI AMOOGHIN Abtin. Interfacial design of ternary mixed matrix membranes containing pebax 1657/silver-nanopowder/[BMIM][BF 4] for improved CO2 separation performance[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10094-10105.
|
33 |
宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659.
|
|
NING Mengjia, DAI Yan, XI Yuan, et al. CO2 separation of Pebax-based mixed matrix membranes promoted by Cu(Qc)2 [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5652-5659.
|
34 |
SANAEEPUR Hamidreza, AHMADI Reyhane, EBADI AMOOGHIN Abtin, et al. A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 234-246.
|
35 |
Nguyen TIEN-BINH, Hoang VINH-THANG, CHEN Xiao yuan, et al. Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation[J]. Journal of Materials Chemistry A, 2015, 3(29): 15202-15213.
|
36 |
CHENG Youdong, ZHAI Linzhi, YING Yunpan, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7(9): 4549-4560.
|
37 |
XIAO Youchang, Bee Ting LOW, HOSSEINI Seyed Saeid, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580.
|
38 |
ZHANG Lingling, DAI Fangfang, YI Ruobing, et al. Effect of physical and chemical structures of graphene oxide on water permeation in graphene oxide membranes[J]. Applied Surface Science, 2020, 520: 146308.
|
39 |
ZHAO Dan, REN Jizhong, LI Hui, et al. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes[J]. Journal of Membrane Science, 2014, 467: 41-47.
|
40 |
WANG Qiuchen, DAI Yan, RUAN Xuehua, et al. ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation[J]. Journal of Membrane Science, 2021, 630: 119323.
|
41 |
MESHKAT Shadi, KALIAGUINE Serge, RODRIGUE Denis. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200: 177-190.
|
42 |
YANG KAI, DAI YAN, RUAN XUEHUA, et al. Stretched ZIF-8@GO flake-like fillers via pre-Zn(Ⅱ)-doping strategy to enhance CO2 permeation in mixed matrix membranes[J]. Journal of Membrane Science, 2020, 601: 117934.
|