化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4662-4672.DOI: 10.16085/j.issn.1000-6613.2021-2431
彭德其1(), 冯源1, 王依然1, 谭卓伟1(), 俞天兰2, 吴淑英1
收稿日期:
2021-11-26
修回日期:
2022-02-23
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
谭卓伟
作者简介:
彭德其(1972—),男,博士,教授,研究方向为过程强化与节能环保。E-mail:pengshuaike@163.com。
基金资助:
PENG Deqi1(), FENG Yuan1, WANG Yiran1, TAN Zhuowei1(), YU Tianlan2, WU Shuying1
Received:
2021-11-26
Revised:
2022-02-23
Online:
2022-09-25
Published:
2022-09-27
Contact:
TAN Zhuowei
摘要:
为分析颗粒群在立式缩放管内的运动规律,基于计算流体力学-离散单元(CFD-DEM)耦合方法模拟研究缩放比γ、肋高e和颗粒进口浓度α对管内颗粒群浓度分布与汇聚特性的影响。结果表明:在研究参数范围内,颗粒群的轴向浓度分布较为均匀,管下部颗粒滞留相对较多;颗粒群径向相对浓度遵循管中心区域浓度低,近壁面颗粒相对浓度较高的规律;肋高e=1.0mm的缩放管在颗粒进口浓度α≤2%时,管壁附近颗粒浓度最高。在管段中上部颗粒运动相对稳定阶段,在肋高e=2.0mm与缩放比γ≤1.0、颗粒进口浓度α≥3%工况下,颗粒群易出现汇聚现象。
中图分类号:
彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672.
PENG Deqi, FENG Yuan, WANG Yiran, TAN Zhuowei, YU Tianlan, WU Shuying. Distribution characteristics and convergence of particles in converging-diverging tube[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4662-4672.
缩放管编号 | 肋高e/mm | 缩放比γ | 节距P/mm |
---|---|---|---|
1 | 1.0 | 0.5 | 24 |
2 | 1.0 | 0.5 | 24 |
3 | 1.0 | 0.5 | 24 |
4 | 1.5 | 1.0 | 24 |
5 | 1.5 | 1.0 | 24 |
6 | 1.5 | 1.0 | 24 |
7 | 2.0 | 2.0 | 24 |
8 | 2.0 | 2.0 | 24 |
9 | 2.0 | 2.0 | 24 |
表1 缩放管结构参数
缩放管编号 | 肋高e/mm | 缩放比γ | 节距P/mm |
---|---|---|---|
1 | 1.0 | 0.5 | 24 |
2 | 1.0 | 0.5 | 24 |
3 | 1.0 | 0.5 | 24 |
4 | 1.5 | 1.0 | 24 |
5 | 1.5 | 1.0 | 24 |
6 | 1.5 | 1.0 | 24 |
7 | 2.0 | 2.0 | 24 |
8 | 2.0 | 2.0 | 24 |
9 | 2.0 | 2.0 | 24 |
黏度 /kg·m-1·s-1 | 密度 /kg·m-3 | 定压比热容 /J·kg-1·K-1 | 热导率 /W·m-1·K-1 | Pr |
---|---|---|---|---|
0.8854×10-6 | 996.5 | 4177 | 0.612 | 5.9 |
表2 300K水的物性参数
黏度 /kg·m-1·s-1 | 密度 /kg·m-3 | 定压比热容 /J·kg-1·K-1 | 热导率 /W·m-1·K-1 | Pr |
---|---|---|---|---|
0.8854×10-6 | 996.5 | 4177 | 0.612 | 5.9 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
颗粒泊松比 | 0.29 | 颗粒-颗粒恢复系数 | 0.3 |
颗粒剪切模量/Pa | 1×108 | 颗粒-颗粒静摩擦系数 | 0.3 |
颗粒密度/kg·m-3 | 2500 | 颗粒-颗粒滚动摩擦系数 | 0.02 |
管壁(钢)泊松比 | 0.28 | 颗粒-管壁恢复系数 | 0.45 |
管壁(钢)剪切模量/Pa | 7×1010 | 颗粒-管壁静摩擦系数 | 0.5 |
管壁(钢)密度/kg·m-3 | 7800 | 颗粒-管壁滚动摩擦系数 | 0.05 |
表3 颗粒参数
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
颗粒泊松比 | 0.29 | 颗粒-颗粒恢复系数 | 0.3 |
颗粒剪切模量/Pa | 1×108 | 颗粒-颗粒静摩擦系数 | 0.3 |
颗粒密度/kg·m-3 | 2500 | 颗粒-颗粒滚动摩擦系数 | 0.02 |
管壁(钢)泊松比 | 0.28 | 颗粒-管壁恢复系数 | 0.45 |
管壁(钢)剪切模量/Pa | 7×1010 | 颗粒-管壁静摩擦系数 | 0.5 |
管壁(钢)密度/kg·m-3 | 7800 | 颗粒-管壁滚动摩擦系数 | 0.05 |
参数 | 数值 |
---|---|
缩放管编号 | 1、2、3、4、5、6、7、8、9 |
颗粒进口浓度α | 1%、2%、3%、4% |
表4 模拟工况
参数 | 数值 |
---|---|
缩放管编号 | 1、2、3、4、5、6、7、8、9 |
颗粒进口浓度α | 1%、2%、3%、4% |
1 | EHSANI M, MOVAHEDIRAD S, SHAHHOSSEINI S. The effect of particle properties on the heat transfer characteristics of a liquid-solid fluidized bed heat exchanger[J]. International Journal of Thermal Sciences, 2016, 102: 111-121. |
2 | 孙丽, 张楠, 刘新华, 等. 边界条件对颗粒-流体对流传热的影响[J]. 过程工程学报, 2019, 19(6): 1075-1084. |
SUN Li, ZHANG Nan, LIU Xinhua, et al. Effect of boundary conditions on particle-fluid convection heat transfer[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1075-1084. | |
3 | IMAI T, MURAYAMA T, ONO Y. The estimation of convective heat transfer coefficients between a spherical particle and fluid at lower Reynolds number[J]. ISIJ International, 1995, 35(12): 1438-1443. |
4 | IMAI T, MURAYAMA T, ONO Y. The effect of structure of packed beds on the convective heat transfer coefficient between particle and liquid[J]. ISIJ International, 1994, 34(10): 777-783. |
5 | STRÖM H, SASIC S. Detailed simulations of the effect of particle deformation and particle-fluid heat transfer on particle-particle interactions in liquids[J]. Procedia Engineering, 2015, 102: 1563-1572. |
6 | MELLER Y, LIBERZON A. Particle-fluid interaction forces as the source of acceleration PDF invariance in particle size[J]. International Journal of Multiphase Flow, 2015, 76: 22-31. |
7 | SHOKRI R, GHAEMI S, NOBES D S, et al. Investigation of particle-laden turbulent pipe flow at high-Reynolds-number using particle image/tracking velocimetry (PIV/PTV)[J]. International Journal of Multiphase Flow, 2017, 89: 136-149. |
8 | 王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735. |
WANG Bingjie, LI Hui, YANG Xiaoyong, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. | |
9 | CHAVAN P V, THOMBARE M A, BANKAR S B, et al. Novel multistage solid-liquid circulating fluidized bed: hydrodynamic characteristics[J]. Particuology, 2018, 38: 134-142. |
10 | JIANG Feng, ZHAO Pengli, QI Guopeng, et al. Flow characteristics in a horizontal liquid-solid circulating fluidized bed[J]. Powder Technology, 2019, 342: 24-35. |
11 | SONG Y F, ZHU J, ZHANG C, et al. Comparison of liquid-solid flow characteristics in upward and downward circulating fluidized beds by CFD approach[J]. Chemical Engineering Science, 2019, 196: 501-513. |
12 | 王丽燕, 孙志强, 周天, 等.基于PIV图像处理法的管内低浓度液固两相流颗粒运动特性研究[J]. 工程热物理学报, 2018, 39(9): 1970-1978. |
WANG Liyan, SUN Zhiqiang, ZHOU Tian, et al. Flow characteristics of particles in liquid-solid two-phase flow in pipes at low solid volume fractions using PIV[J]. Journal of Engineering Thermophysics, 2018, 39(9): 1970-1978. | |
13 | LUO Hao, ZHANG Chao, SUN Zeneng, et al. Numerical investigation of hydrodynamics in liquid-solid circulating fluidized beds under different operating conditions[J]. Advanced Powder Technology, 2021, 32(4): 1047-1059. |
14 | REN Panfeng, LI Wenbin, YU Kuotsung. Computational fluid dynamics simulation of adsorption process in a liquid-solids fluidized bed[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105428. |
15 | 张健, 张栋, 邱月. 垂直管道内液-固两相流动的压降和相分布特征[J]. 山东科技大学学报(自然科学版), 2020, 39(4): 66-71. |
ZHANG Jian, ZHANG Dong, QIU Yue. Investigation on pressure drop and phase distribution of liquid-solid two-phase vertical pipe flow[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(4): 66-71. | |
16 | CARLOS VARAS A E, PETERS E A J F, KUIPERS J A M. CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics[J]. Chemical Engineering Science, 2017, 169: 246-258. |
17 | 石瑞芳, 林建忠. 气固两相湍流场纳米颗粒演变特性综述[J]. 航空学报, 2021, 42(12): 625825. |
SHI Ruifang, LIN Jianzhong. A review on evolution characteristics of nanoparticles in gas-solid two-phase turbulent flow field[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625825. | |
18 | JABBARI F, RAJABPOUR A, SAEDODIN S. Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies[J]. Chemical Engineering Science, 2017, 174: 67-81. |
19 | THOMBARE M A, CHAVAN P V, BANKAR S B, et al. Solid-liquid circulating fluidized bed: a way forward[J]. Reviews in Chemical Engineering, 2018, 35(1): 1-44. |
20 | AN Xiaodong, LIU Mingyan, FU Yunguan. Clustering behavior of solid particles in two-dimensional liquid-solid fluidized-beds[J]. China Particuology, 2007, 5(5): 305-311. |
21 | BARTSCH P, ZUNFT S. Granular flow around the horizontal tubes of a particle heat exchanger: DEM-simulation and experimental validation[J]. Solar Energy, 2019, 182: 48-56. |
22 | 生丽莎, 陈振乾.纳米流体中纳米颗粒分散性能的分子动力学模拟[J]. 东南大学学报(自然科学版), 2021, 51(4): 700-706. |
SHENG Lisha, CHEN Zhenqian. Molecular dynamics simulation of dispersion property of nanoparticles in nanofluids[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 700-706. | |
23 | 靳遵龙, 董其伍, 刘敏珊, 等. 缩放管流体流动与传热性能数值研究[J]. 冶金能源, 2009, 28(3): 12-14. |
JIN Zunlong, DONG Qiwu, LIU Minshan, et al. Numerical simulation on the fluid flow and heat transfer inside the convergent-divergent tube[J]. Energy for Metallurgical Industry, 2009, 28(3): 12-14. | |
24 | 孙鹏, 朱慧. 缩放管内甘油的流动特性数值模拟研究[J]. 河北农机, 2018(9): 44-45. |
SUN Peng, ZHU Hui. Numerical simulation study on the flow characteristics of glycerin in a convergent tube[J]. Hebei Agricultural Machinery, 2018(9): 44-45. | |
25 | 张亚君, 李军, 邓先和, 等. 几种强化传热管的流阻和传热性能[J]. 石油化工设备, 2004, 33(5): 5-7. |
ZHANG Yajun, LI Jun, DENG Xianhe, et al. Experimental study on heat transfer and flow resistance performances of several enhanced tubes[J]. Petro-Chemical Equipment, 2004, 33(5): 5-7. | |
26 | 王旭, 陈海峰, 谢霄虎, 等. 等节距缩放管内传热数值模拟及场协同分析[J]. 热能动力工程, 2020, 35(3): 151-157. |
WANG Xu, CHEN Haifeng, XIE Xiaohu, et al. Numerical simulation and field synergy analysis of convective heat transfer characteristics inside the equal-pitch converging-diverging tube[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 151-157. | |
27 | 吴秋华, 江楠.结构参数对缩放管性能影响的数值模拟研究[J]. 化工设备与管道, 2011, 48(6): 14-17. |
WU Qiuhua, JIANG Nan. Numerical simulation study of influence of structural parameters to performance of convergent-divergent tube[J]. Process Equipment & Piping, 2011, 48(6): 14-17. | |
28 | 李喜玉, 邓先和, 陈庆辉. 缩放管内带衰减性自旋流的复合强化传热研究[J]. 化学工程, 2011, 39(2): 14-17. |
LI Xiyu, DENG Xianhe, CHEN Qinghui. Compound heat transfer enhancement in converging-diverging tube with delaying self-sustaining swirl flow[J]. Chemical Engineering (China), 2011, 39(2): 14-17. | |
29 | 舒梦梅, 卿德藩, 王红兵. 缩放管内脉动流传热性能研究[J]. 机械研究与应用, 2018, 31(2): 77-80. |
SHU Mengmei, QING Defan, WANG Hongbing. Study on heat transfer performance of pulsating flow in convergent-divergent tube[J]. Mechanical Research & Application, 2018, 31(2): 77-80. | |
30 | GAN J Q, YU A B, ZHOU Z Y. DEM simulation on the packing of fine ellipsoids[J]. Chemical Engineering Science, 2016, 156: 64-76. |
31 | GAN J Q, ZHOU Z Y, YU A B. Structure analysis on the packing of ellipsoids under one-dimensional vibration and periodic boundary conditions[J]. Powder Technology, 2018, 335: 327-333. |
32 | TAN M, KARABACAK R, ACAR M. Experimental assessment the liquid/solid fluidized bed heat exchanger of thermal performance: an application[J]. Geothermics, 2016, 62: 70-78. |
[1] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[5] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[6] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[7] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[8] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[9] | 袁守正, 陈啸, 蒋鸣, 余亚雄, 周强. 气固下行床中壁面对介尺度曳力的影响规律[J]. 化工进展, 2023, 42(5): 2272-2281. |
[10] | 庞力平, 袁虎, 丘文生, 段立强, 李文学. 深度调峰锅炉水动力特性分析[J]. 化工进展, 2023, 42(4): 1708-1718. |
[11] | 罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239. |
[12] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[13] | 曾龙, 郑贵森, 邓大祥, 孙健, 刘永恒. 多孔壁面微通道换热性能的实验研究[J]. 化工进展, 2022, 41(9): 4625-4634. |
[14] | 张猛, 李树谦, 张东, 马坤茹. 微细通道内蒸汽直接接触间歇凝结汽液相界面运动特性[J]. 化工进展, 2022, 41(9): 4644-4652. |
[15] | 范军领, 何昊, 张攀, 陈光辉. 局部磨损对α型旋风分离器内流场及分离性能的影响[J]. 化工进展, 2022, 41(8): 4025-4034. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |