化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3465-3474.DOI: 10.16085/j.issn.1000-6613.2021-1633
古新1(), 张前欣1, 王超鹏2, 方运阁1, 李宁1, 王永庆1()
收稿日期:
2021-08-02
修回日期:
2021-09-09
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
王永庆
作者简介:
古新(1978—),男,博士,教授,研究方向为传热传质。E-mail: 基金资助:
GU Xin1(), ZHANG Qianxin1, WANG Chaopeng2, FANG Yunge1, LI Ning1, WANG Yongqing1()
Received:
2021-08-02
Revised:
2021-09-09
Online:
2022-07-25
Published:
2022-07-23
Contact:
WANG Yongqing
摘要:
建立U形导流板换热器和扭转流换热器全截面周期模型,利用计算流体力学(CFD)方法对两种换热器壳程性能进行数值研究。相较于扭转流换热器,U形导流板换热器的壳程压降降低45.3%~47.5%,传热系数降低9.9%~13.5%,均匀性提高2.4%~4.0%,综合性能提高4.0%~14.6%。场协同结果表明,U形导流板换热器壳程流体速度与压力梯度的协同性优于扭转流换热器,而流体速度与温度梯度的协同性不如扭转流换热器。本文利用激光多普勒测速仪(LDV)验证了模拟方法准确性和模拟结果的可靠性;分析了U形导流板结构参数及布置方式对换热器壳程压降和传热性能的影响。结果表明,U形导流板的布置角度和布置方式对性能影响显著,导流板宽度和导流板间距的影响较小。
中图分类号:
古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474.
GU Xin, ZHANG Qianxin, WANG Chaopeng, FANG Yunge, LI Ning, WANG Yongqing. Analysis of heat transfer and resistance performance of U-shaped baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3465-3474.
筒体内径/mm | 换热管长度/mm | 换热管间距/mm | 换热管尺寸/mm | 导流板倾角/(°) | 导流板宽度/mm | 导流板间距/mm | 换热管数量 | 布管方式 |
---|---|---|---|---|---|---|---|---|
150 | 160 | 25 | ?19×2 | 45 | 60 | 80 | 21 | 正方形 |
表1 U形导流板与扭转流换热器结构参数
筒体内径/mm | 换热管长度/mm | 换热管间距/mm | 换热管尺寸/mm | 导流板倾角/(°) | 导流板宽度/mm | 导流板间距/mm | 换热管数量 | 布管方式 |
---|---|---|---|---|---|---|---|---|
150 | 160 | 25 | ?19×2 | 45 | 60 | 80 | 21 | 正方形 |
网格大小/mm | 压降/Pa·m-1 | 误差/% | 传热系数/W·m-2·K-1 | 误差 |
---|---|---|---|---|
5 | 954.1 | — | 2278.8 | — |
4 | 974.5 | 2.1 | 2292.5 | 0.6 |
3 | 985.6 | 1.1 | 2297.8 | 0.2 |
2 | 992.2 | 0.7 | 2275.5 | 0.9 |
表2 不同网格尺寸下压降与传热系数
网格大小/mm | 压降/Pa·m-1 | 误差/% | 传热系数/W·m-2·K-1 | 误差 |
---|---|---|---|---|
5 | 954.1 | — | 2278.8 | — |
4 | 974.5 | 2.1 | 2292.5 | 0.6 |
3 | 985.6 | 1.1 | 2297.8 | 0.2 |
2 | 992.2 | 0.7 | 2275.5 | 0.9 |
激光功率/W | 蓝色波长/nm | 绿色波长/nm | 光束直径/mm | 透镜焦距/mm | 透镜型号 | 探头型号 |
---|---|---|---|---|---|---|
2 | 488 | 514.5 | 2.65 | 363 | TLN06-350 | TR*60 |
表3 LDV性能指标
激光功率/W | 蓝色波长/nm | 绿色波长/nm | 光束直径/mm | 透镜焦距/mm | 透镜型号 | 探头型号 |
---|---|---|---|---|---|---|
2 | 488 | 514.5 | 2.65 | 363 | TLN06-350 | TR*60 |
M/kg·s-1 | U形导流板换热器 | 扭转流换热器 | ||||
---|---|---|---|---|---|---|
Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | |
1.4 | 545.5 | 1960.7 | 50.9 | 992.2 | 2275.5 | 41.7 |
2.1 | 1189 | 2765.9 | 72.5 | 2266.6 | 3268.1 | 68.0 |
2.81 | 2094.4 | 3613.2 | 95.8 | 4156.4 | 4184.4 | 86.6 |
3.51 | 3239.9 | 4454.3 | 119.4 | 5975.3 | 5056.7 | 107.6 |
4.21 | 4661.8 | 5278.3 | 141.5 | 8596.3 | 5897.5 | 126.2 |
表4 U形导流板和扭转流换热器不同流量下性能变化
M/kg·s-1 | U形导流板换热器 | 扭转流换热器 | ||||
---|---|---|---|---|---|---|
Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | |
1.4 | 545.5 | 1960.7 | 50.9 | 992.2 | 2275.5 | 41.7 |
2.1 | 1189 | 2765.9 | 72.5 | 2266.6 | 3268.1 | 68.0 |
2.81 | 2094.4 | 3613.2 | 95.8 | 4156.4 | 4184.4 | 86.6 |
3.51 | 3239.9 | 4454.3 | 119.4 | 5975.3 | 5056.7 | 107.6 |
4.21 | 4661.8 | 5278.3 | 141.5 | 8596.3 | 5897.5 | 126.2 |
试验 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 | Δp/Pa·m-1 | h/W·m-2·K-1 |
---|---|---|---|---|---|---|
1 | 30 | 80 | 50 | 平行布置 | 1828.66 | 2806.07 |
2 | 30 | 100 | 90 | 对折布置 | 7637.88 | 4178.98 |
3 | 30 | 120 | 70 | 旋转布置 | 1563.35 | 2555.43 |
4 | 45 | 80 | 90 | 旋转布置 | 599.69 | 2044.33 |
5 | 45 | 100 | 70 | 平行布置 | 536.18 | 1955.49 |
6 | 45 | 120 | 50 | 对折布置 | 1563.8 | 2876.81 |
7 | 60 | 80 | 70 | 对折布置 | 964.47 | 2563.93 |
8 | 60 | 100 | 50 | 旋转布置 | 159.99 | 1437.52 |
9 | 60 | 120 | 90 | 平行布置 | 218.98 | 1748.42 |
表5 U形导流板换热器正交试验结果
试验 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 | Δp/Pa·m-1 | h/W·m-2·K-1 |
---|---|---|---|---|---|---|
1 | 30 | 80 | 50 | 平行布置 | 1828.66 | 2806.07 |
2 | 30 | 100 | 90 | 对折布置 | 7637.88 | 4178.98 |
3 | 30 | 120 | 70 | 旋转布置 | 1563.35 | 2555.43 |
4 | 45 | 80 | 90 | 旋转布置 | 599.69 | 2044.33 |
5 | 45 | 100 | 70 | 平行布置 | 536.18 | 1955.49 |
6 | 45 | 120 | 50 | 对折布置 | 1563.8 | 2876.81 |
7 | 60 | 80 | 70 | 对折布置 | 964.47 | 2563.93 |
8 | 60 | 100 | 50 | 旋转布置 | 159.99 | 1437.52 |
9 | 60 | 120 | 90 | 平行布置 | 218.98 | 1748.42 |
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3676.63 | 1130.94 | 1184.15 | 861.27 |
均值2 | 899.89 | 2778.02 | 2818.85 | 3388.71 |
均值3 | 447.81 | 1115.38 | 1021.33 | 774.34 |
极差 | 3228.82 | 1662.64 | 1797.52 | 2614.37 |
表6 压降模拟结果的极差
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3676.63 | 1130.94 | 1184.15 | 861.27 |
均值2 | 899.89 | 2778.02 | 2818.85 | 3388.71 |
均值3 | 447.81 | 1115.38 | 1021.33 | 774.34 |
极差 | 3228.82 | 1662.64 | 1797.52 | 2614.37 |
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3180.16 | 2471.44 | 2373.47 | 2169.99 |
均值2 | 2292.21 | 2524 | 2657.24 | 3206.57 |
均值3 | 1916.62 | 2393.55 | 2358.28 | 2012.43 |
极差 | 1263.54 | 130.45 | 298.96 | 1194.14 |
表7 传热系数模拟结果的极差
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3180.16 | 2471.44 | 2373.47 | 2169.99 |
均值2 | 2292.21 | 2524 | 2657.24 | 3206.57 |
均值3 | 1916.62 | 2393.55 | 2358.28 | 2012.43 |
极差 | 1263.54 | 130.45 | 298.96 | 1194.14 |
1 | 林文珠, 曹嘉豪, 方晓明, 等. 管壳式换热器强化传热研究进展[J]. 化工进展, 2018, 37(4): 1276-1286. |
LIN Wenzhu, CAO Jiahao, FANG Xiaoming, et al. Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1276-1286. | |
2 | YOUCEF A, SAIM R. Computational analysis of turbulent flow and thermal transfer in a shell and tube heat exchanger[J]. International Journal of Heat and Technology, 2019, 37(4): 1043-1051. |
3 | 钱才富, 高宏宇, 孙海阳. 曲面弓形折流板换热器壳程流体流动与传热[J]. 化工学报, 2011, 62(5): 1233-1238. |
QIAN Caifu, GAO Hongyu, SUN Haiyang. Shell-side fluid flow and heat transfer in curved baffle heat exchanger[J]. CIESC Journal, 2011, 62(5): 1233-1238. | |
4 | 董其伍, 杜庆飞, 刘敏珊, 等. 三叶孔板换热器壳程流体流动和传热特性数值研究[J]. 化工设备与管道, 2012, 49(2): 21-23, 27. |
DONG Qingwu, Du Qingfei, LIU Minshan, et al. Numerical research on flow and heat transfer characteristics in shell-side of heat exchanger with trefoil-tube-support[J]. Process Equipment & Piping, 2012, 49(2): 21-23, 27. | |
5 | 王斯民, 孙利娟, 宋晨, 等. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362. |
WANG Simin, SUN Lijuan, SONG Chen, et al. Multi-objective optimization on shell-side performance of rod-baffle heat exchangers with twisted oval tubes[J]. CIESC Journal, 2019, 70(9): 3353-3362. | |
6 | 王新婷, 郑年本, 刘鹏, 等. 波形折流杆换热器的流动与传热性能分析[J]. 工程热物理学报, 2016, 37(8): 1758-1762. |
WANG Xinting, ZHENG Nianben, LIU Peng, et al. Analysis of flow and heat transfer capability in rod baffle heat exchangers with ripple rods[J]. Journal of Engineering Thermophysics, 2016, 37(8): 1758-1762. | |
7 | LI X Z, ZHU D S, YIN Y D, et al. Parametric study on heat transfer and pressure drop of twisted oval tube bundle with in line layout[J]. International Journal of Heat and Mass Transfer, 2019, 135: 860-872. |
8 | GU X, LIU B, WANG Y Q, et al. Heat transfer and flow resistance performance of shutter baffle heat exchanger with triangle tube layout in shell side[J]. Advances in Mechanical Engineering, 2016, 8(3): 168781401664101. |
9 | 王斯民, 肖娟, 王家瑞, 等. 基于流固耦合理论的螺旋折流板换热器结构优化研究[J]. 高校化学工程学报, 2017, 31(3): 539-546. |
WANG Simin, XIAO Juan, WANG Jiarui, et al. Structural optimization of shell-tube heat exchanger with helical baffles based on fluid-structure interaction[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 539-546. | |
10 | CHEN Y P, TANG H L, WU J F, et al. Performance comparison of heat exchangers using sextant/trisection helical baffles and segmental ones[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2892-2899. |
11 | DU W J, WANG H F, CHENG L. Effects of shape and quantity of helical baffle on the shell-side heat transfer and flow performance of heat exchangers[J]. Chinese Journal of Chemical Engineering, 2014, 22(3): 243-251. |
12 | SALAHUDDIN U, BILAL M, EJAZ H. A review of the advancements made in helical baffles used in shell and tube heat exchangers[J]. International Communications in Heat and Mass Transfer, 2015, 67:104-108. |
13 | CAO X, DU T T, LIU Z, et al. Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118437. |
14 | WANG Xinting, ZHENG Nianben, LIU Zhichunet al. Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles[J]. International Journal of Heat and Mass Transfer, 2018, 124: 247-259. |
15 | MAAKOUL A EL, LAKNIZI A, SAADEDDINE S, et al. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles[J]. Applied Thermal Engineering, 2016, 109: 175-185. |
16 | MOHAMMADI M H, ABBASI H R, YAVARINSAB A, et al. Thermal optimization of shell and tube heat exchanger using porous baffles[J]. Applied Thermal Engineering, 2020, 170: 115005. |
17 | 马璐, 王珂, 王永庆, 等. 帘式折流片换热器壳程热力特性的数值研究[J]. 化学工程, 2016, 44(12): 26-30. |
MA Lu, WANG Ke, WANG Yongqing, et al. Numerical research on thermodynamic characteristics in shell-side of shell-and-tube heat exchanger with shutter baffles[J]. Chemical Engineering, 2016, 44(12): 26-30. | |
18 | JIAN W, YANG H Z, WANG S M, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 89: 438-448. |
19 | YANG S F, CHEN Y P, WU J F, et al. Performance simulation on unilateral ladder type helical baffle heat exchanger in half cylindrical space[J]. Energy Conversion and Management, 2017, 150: 134-147. |
20 | 张轩恺, 韩东, 何纬峰, 等. 新型螺旋梅花形孔板换热器热力性能仿真计算[J]. 工程热物理学报, 2017, 38(9): 1952-1959. |
ZHANG Xuankai, HAN Dong, HE Weifeng, et al. The simulation on thermal performance of a novel shell-and-tube heat exchanger with screw cinquefoil orifice baffles[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1952-1959. | |
21 | ZHANG Xuankai, HAN Dong, HE Weifeng, et al. Numerical simulation on a novel shell-and-tube heat exchanger with screw cinquefoil orifice baffles[J]. Advances in Mechanical Engineering, 2017, 9(8): 168781401771766. |
22 | GU X, LUO Yuankun, XIONG Xiaochao, et al. Numerical and experimental investigation of the heat exchanger with trapezoidal baffle[J]. International Journal of Heat and Mass Transfer, 2018, 127: 598-606. |
23 | GU Xin, ZHENG Zhiyang, XIONG Xiaochao, et al. Characteristics of fluid flow and heat transfer in the shell side of the trapezoidal-like tilted baffles heat exchanger[J]. Journal of Thermal Science, 2018, 27(6): 602-610. |
24 | KIM T. Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks[J]. Annals of Nuclear Energy, 2013,57: 209-215. |
25 | 古新, 董其伍, 刘敏珊. 周期性模型在管壳式换热器数值模拟中的应用[J]. 热能动力工程, 2008, 23(1): 64-68. |
GU Xin, DONG Qiwu, LIU Minshan. Application of a periodic model in the numerical simulation of shell-and-tube heat exchangers[J]. Journal of Engineering for Thermal Energy and Power, 2018, 23(1): 64-68. | |
26 | 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安: 西安交通大学出版社, 2006. |
ZHANG Mingyuan, JING Sirui, LI Guojun. Advanced fluid mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 2006. | |
27 | 王宏建, 雷勇刚, 张建伟. 收缩式角孔通道对板式换热器流动均匀性的影响[J]. 科学技术与工程, 2020, 20(9): 3617-3622. |
WANG Hongjian, LEI Yonggang, ZHANG Jianwei. Effect of tapered manifold on flow uniformity of plate heat exchangers[J]. Science Technology and Engineering, 2020, 20(9): 3617-3622. | |
28 | 陶红歌, 陈焕新, 谢军龙, 等. 基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J]. 化工学报, 2010, 61(S2): 116-120. |
TAO Hongge, CHEN Huanxin, XIE Junlong, et al. Flow uniformity index based on area-weighted and mass-weighted average velocity[J]. CIESC Journal, 2010, 61(S2):116-120. | |
29 | ABBASIAN ARANI A A, MORADI R. Shell and tube heat exchanger optimization using new baffle and tube configuration[J]. Applied Thermal Engineering, 2019, 157: 113736. |
30 | WANG Y Q, WANG D, JIN Z L, et al. Laminar flow and heat transfer in a rectangular channel with walls corrugated in the orthogonal directions[J]. Chemical Engineering & Technology, 2016, 39(3): 551-558. |
31 | WANG G H, WANG D B, PENG X, et al. Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 772-787. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[3] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[12] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[13] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[14] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[15] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |