化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2389-2403.DOI: 10.16085/j.issn.1000-6613.2021-0994
收稿日期:
2021-05-11
修回日期:
2021-06-29
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
杨朝合
作者简介:
林栋(1994—),男,博士研究生,研究方向为钛硅分子筛合成及烯烃环氧化。E-mail:基金资助:
LIN Dong(), FENG Xiang, LIU Yibin, CHEN Xiaobo, YANG Chaohe()
Received:
2021-05-11
Revised:
2021-06-29
Online:
2022-05-05
Published:
2022-05-24
Contact:
YANG Chaohe
摘要:
随着绿色化工发展战略的推进,钛硅分子筛凭借其独特的选择性环氧化能力而引起广泛关注,合理调控钛硅分子筛的结构是提升烯烃环氧化反应效果的关键。本文分别对钛硅分子筛的结构类型、硅钛原子比、表面疏水性、颗粒传质性能的调控方法进行了介绍,系统总结了高活性钛硅分子筛的合成策略,并概述了TS-1钛硅分子筛工业生产技术的进展。以负载金属的钛硅分子筛催化剂为例,着重讨论了基于该催化剂的丙烯直接临氢气相环氧化反应的性能与机理,肯定了催化剂中包括载体钛位点和负载金属位点的双位点在环氧化反应中的重要性,并从金基催化剂的电子性质、空间分布、尺寸效应三个方面总结了高效金属位点的调控策略。此外,基于丙烯气相临氢环氧化当前存在的问题与挑战,进一步提出其潜在的解决方案与未来的发展方向。
中图分类号:
林栋, 冯翔, 刘熠斌, 陈小博, 杨朝合. 高性能钛硅分子筛可控合成及其催化丙烯气相环氧化研究进展[J]. 化工进展, 2022, 41(5): 2389-2403.
LIN Dong, FENG Xiang, LIU Yibin, CHEN Xiaobo, YANG Chaohe. Research progress on the controllable synthesis of high-performance titanium silicalite and its catalytic propene epoxidation with gaseous hydrogen and oxygen[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2389-2403.
1 | BREGANTE D T, FLAHERTY D W. Periodic trends in olefin epoxidation over group Ⅳ and Ⅴ framework-substituted zeolite catalysts: a kinetic and spectroscopic study[J]. Journal of the American Chemical Society, 2017, 139(20): 6888-6898. |
2 | LEI J Y, DAI J J, TAN K B, et al. Insight into the effect of copper substitution on the catalytic performance of LaCoO3-based catalysts for direct epoxidation of propylene with molecular oxygen[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 794-808. |
3 | 薛金召, 牛小娟, 汪希领, 等. 国内环氧丙烷市场分析及技术进展[J]. 化工进展, 2015, 34(9): 3500-3506. |
XUE Jinzhao, NIU Xiaojuan, WANG Xiling, et al. Market analysis and technology progress of domestic propylene oxide[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3500-3506. | |
4 | TERŽAN J, HUŠ M, LIKOZAR B, et al. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review[J]. ACS Catalysis, 2020, 10(22): 13415-13436. |
5 | ZHAN C, WANG Q X, ZHOU L Y, et al. Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen[J]. Journal of the American Chemical Society, 2020, 142(33): 14134-14141. |
6 | BAIDYA T, MAZUMDER T, KOLTUNOV K Y, et al. Low-temperature propylene epoxidation activity of CuO-CeO2 catalyst with CO + O2: role of metal-support interaction on the reducibility and catalytic property of CuO x species[J]. The Journal of Physical Chemistry C, 2020, 124(26): 14131-14146. |
7 | CHEN S L, LI D, CAO T, et al. Size-dependent structures and catalytic performances of Au/TiO2-{001} catalysts for propene epoxidation[J]. The Journal of Physical Chemistry C, 2020, 124(28): 15264-15274. |
8 | 杜威, 张志华, 段学志, 等. 丙烯氢氧环氧化动力学与反应器概念设计研究进展[J]. 化工学报, 2021, 72(1): 116-131. |
DU Wei, ZHANG Zhihua, DUAN Xuezhi, et al. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2 [J]. CIESC Journal, 2021, 72(1): 116-131. | |
9 | HONG Y L, HUANG J L, ZHAN G W, et al. Biomass-modified Au/TS-1 as highly efficient and stable nanocatalysts for propene epoxidation with O2 and H2 [J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 21953-21960. |
10 | REN Y G, SUN X, HUANG J H, et al. Dual-component sodium and cesium promoters for Au/TS-1: enhancement of propene epoxidation with hydrogen and oxygen[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8155-8163. |
11 | FENG X, SHENG N, LIU Y B, et al. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1[J]. ACS Catalysis, 2017, 7(4): 2668-2675. |
12 | WANG L, DAI J J, XU Y, et al. Titanium silicalite-1 zeolite encapsulating Au particles as a catalyst for vapor phase propylene epoxidation with H2/O2: a matter of Au-Ti synergic interaction[J]. Journal of Materials Chemistry A, 2020, 8(8): 4428-4436. |
13 | JIN F, WU Y X, LIU S W, et al. Effect of Ti incorporated MWW supports on Au loading and catalytic performance for direct propylene epoxidation[J]. Catalysis Today, 2016, 264: 98-108. |
14 | SACALIUC E, BEALE A M, WECKHUYSEN B M, et al. Propene epoxidation over Au/Ti-SBA-15 catalysts[J]. Journal of Catalysis, 2007, 248(2): 235-248. |
15 | CHEN J Q, HALIN S J A, PIDKO E A, et al. Enhancement of catalyst performance in the direct propene epoxidation: a study into gold-titanium synergy[J]. ChemCatChem, 2013, 5(2): 467-478. |
16 | ZHANG Z H, ZHAO X, WANG G, et al. Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2 [J]. AIChE Journal, 2020, 66(2): e16815. |
17 | UPHADE B S, AKITA T, NAKAMURA T, et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48[J]. Journal of Catalysis, 2002, 209(2): 331-340. |
18 | REN Y J, XU L, ZHANG L Y, et al. Selective epoxidation of propylene to propylene oxide with H2 and O2 over Au/Ti-MWW catalysts[J]. Pure and Applied Chemistry, 2011, 84(3): 561-578. |
19 | LU J Q, ZHANG X M, BRAVO-SUÁREZ J J, et al. Direct propylene epoxidation over Barium-promoted Au/Ti-TUD catalysts with H2 and O2: effect of Au particle size[J]. Journal of Catalysis, 2007, 250(2): 350-359. |
20 | LIN D, ZHANG Q D, QIN Z X, et al. Reversing titanium oligomer formation towards high-efficiency and green synthesis of titanium-containing molecular sieves[J]. Angewandte Chemie International Edition, 2021, 60(7): 3443-3448. |
21 | LEE W S, AKATAY M C, STACH E A, et al. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene[J]. Journal of Catalysis, 2012, 287: 178-189. |
22 | FENG X, DUAN X Z, CHENG H Y, et al. Au/TS-1 catalyst prepared by deposition-precipitation method for propene epoxidation with H2/O2: insights into the effects of slurry aging time and Si/Ti molar ratio[J]. Journal of Catalysis, 2015, 325: 128-135. |
23 | SHENG N, LIU Z K, SONG Z N, et al. Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst[J]. Chemical Engineering Journal, 2019, 377: 119954. |
24 | SINHA A K, SEELAN S, TSUBOTA S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion[J]. Angewandte Chemie International Edition, 2004, 43(12): 1546-1548. |
25 | CHOWDHURY B, BANDO K K, BRAVO-SUÁREZ J J, et al. Activity of silylated titanosilicate supported gold nanoparticles towards direct propylene epoxidation reaction in the presence of trimethylamine[J]. Journal of Molecular Catalysis A: Chemical, 2012, 359: 21-27. |
26 | SONG Z N, FENG X, SHENG N, et al. Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts: towards enhanced stability for propene epoxidation with H2 and O2 [J]. Chemical Engineering Journal, 2019, 377: 119927. |
27 | NA K, JO C, KIM J, et al. MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides[J]. ACS Catalysis, 2011, 1(8): 901-907. |
28 | SONG Z N, YUAN J C, CAI Z P, et al. Engineering three-layer core-shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2 [J]. Green Energy & Environment, 2020, 5(4): 473-483. |
29 | KRAUSHAAR B, HOOFF J H C. A new method for the preparation of titanium-silicalite (TS-1)[J]. Catalysis Letters, 1988, 1(4): 81-84. |
30 | 许章林, 张盈珍, 郑禄彬. 杂原子沸石的二次合成及其表征——Ⅱ.含Ti、Fe杂原子沸石[J]. 分子催化, 1992, 6(5): 365-370. |
XU Zhanglin, ZHANG Yingzhen, ZHENG Lubin. The secondary synthesis of zeolites via framework substitution for aluminum Ⅱ. Preparation and characterization of zeolite containing Ti and Fe elements[J]. Journal of Molecular Catalysis, 1992, 6(5): 365-370. | |
31 | 刘绚艳, 尹笃林. 钛硅分子筛TS-1的合成改性及其催化功能[J]. 化工进展, 2009, 28(9): 1568-1573. |
LIU Xuanyan, YIN Dulin. Synthesis, modification and catalytic properties of titanium silicalite TS-1 zeolite[J]. Chemical Industry and Engineering Progress, 2009, 28(9): 1568-1573. | |
32 | 郑路凡, 张永强, 刘易, 等. 钛硅分子筛成型的研究进展[J]. 石油化工, 2013, 42(7): 818-823. |
ZHENG Lufan, ZHANG Yongqiang, LIU Yi, et al. Progresses in molding methods for titanium silicalite zeolite[J]. Petrochemical Technology, 2013, 42(7): 818-823. | |
33 | 杨永佳, 夏长久, 林民, 等. 空心钛硅分子筛催化苯甲醛氨肟化制苯甲醛肟反应[J]. 化学反应工程与工艺, 2018, 34(5): 440-447. |
YANG Yongjia, XIA Changjiu, LIN Min, et al. Ammoximation of benzaldehyde catalyzed by hollow titanium silicalite zeolite[J]. Chemical Reaction Engineering and Technology, 2018, 34(5): 440-447. | |
34 | 于剑昆. Degussa-Uhde公司的HPPO工艺介绍[J]. 化学推进剂与高分子材料, 2009, 7(2): 15-22, 30. |
YU Jiankun. Introduction of Degussa-Uhde HPPO process[J]. Chemical Propellants & Polymeric Materials, 2009, 7(2): 15-22, 30. | |
35 | 朱佳, 王明哲, 唐志勇. 钛硅分子筛的技术现状及国内专利分析[J]. 化工时刊, 2012, 26(4): 48-51. |
ZHU Jia, WANG Mingzhe, TANG Zhiyong. The technical status and domestic patents analysis of titanium silicalite molecular sieve[J]. Chemical Industry Times, 2012, 26(4): 48-51. | |
36 | 于剑昆, 吕国会. 国内HPPO工业化技术进展[J]. 化学推进剂与高分子材料, 2019, 17(1): 1-16. |
YU Jiankun, Guohui LYU. Progress of domestic HPPO industrialized technology[J]. Chemical Propellants & Polymeric Materials, 2019, 17(1): 1-16. | |
37 | 林民, 朱斌, 舒兴田, 等. 钛硅分子筛HTS的开发和应用[J]. 石油化工, 2005, 34(S1): 377-379. |
LIN Min, ZHU Bin, SHU Xingtian, et al. Development and application of titanium silicalite HTS[J]. Petrochemical Technology, 2005, 34(S1): 377-379. | |
38 | 林民, 李华, 王伟, 等. 1.0kt/a丙烯与双氧水环氧化制备环氧丙烷的中试研究[J]. 石油炼制与化工, 2013, 44(3): 1-5. |
LIN Min, LI Hua, WANG Wei, et al. The preparation of propylene oxide by propylene epoxidation with hydrogen peroxide in 1.0kt/a pilot plant[J]. Petroleum Processing and Petrochemicals, 2013, 44(3): 1-5. | |
39 | FENG X, DUAN X Z, QIAN G, et al. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2 [J]. Applied Catalysis B: Environmental, 2014, 150/151: 396-401. |
40 | FENG X, LIU Y B, LI Y C, et al. Au/TS-1 catalyst for propene epoxidation with H2/O2: a novel strategy to enhance stability by tuning charging sequence[J]. AIChE Journal, 2016, 62(11): 3963-3972. |
41 | HAYASHI T, TANAKA K, HARUTA M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen[J]. Journal of Catalysis, 1998, 178(2): 566-575. |
42 | NIJHUIS T A, VISSER T, WECKHUYSEN B M. The role of gold in gold-titania epoxidation catalysts[J]. Angewandte Chemie International Edition, 2005, 44(7): 1115-1118. |
43 | BRAVO-SUÁREZ J J, BANDO K K, LU J Q, et al. Transient technique for identification of true reaction intermediates: hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(4): 1115-1123. |
44 | HARRIS J W, ARVAY J, MITCHELL G, et al. Propylene oxide inhibits propylene epoxidation over Au/TS-1[J]. Journal of Catalysis, 2018, 365: 105-114. |
45 | GORDON C P, ENGLER H, TRAGL A S, et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1[J]. Nature, 2020, 586(7831): 708-713. |
46 | DE OLIVEIRA A L, WOLF A, SCHÜTH F. Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts[J]. Catalysis Letters, 2001, 73(2/3/4): 157-160. |
47 | CARTER E A, GODDARD W A III. The surface atomic oxyradical mechanism for Ag-catalyzed olefin epoxidation[J]. Journal of Catalysis, 1988, 112(1): 80-92. |
48 | NIJHUIS T A, MAKKEE M, MOULIJN J A, et al. The production of propene oxide: catalytic processes and recent developments[J]. Industrial & Engineering Chemistry Research, 2006, 45(10): 3447-3459. |
49 | JENZER G, MALLAT T, MACIEJEWSKI M, et al. Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst[J]. Applied Catalysis A: General, 2001, 208(1/2): 125-133. |
50 | GARCÍA-AGUILAR J, FERNÁNDEZ-CATALÁ J, JUAN-JUAN J, et al. Novelty without nobility: outstanding Ni/Ti-SiO2 catalysts for propylene epoxidation[J]. Journal of Catalysis, 2020, 386: 94-105. |
51 | GAUDET J, BANDO K K, SONG Z X, et al. Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1[J]. Journal of Catalysis, 2011, 280(1): 40-49. |
52 | LIN D, ZHENG X H, FENG X, et al. Enhancing the dynamic electron transfer of Au species on wormhole-like TS-1 for boosting propene epoxidation performance with H2 and O2 [J]. Green Energy & Environment, 2020, 5(4): 433-443. |
53 | LI Zhishan, GAO Lin, ZHU Xiangshuai, et al. Synergistic enhancement over Au-Pd/TS-1 bimetallic catalysts for propylene epoxidation with H2 and O2 [J]. ChemCatChem, 2019, 11(20): 5116-5123. |
54 | FENG X, YANG J, DUAN X Z, et al. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au-Ag/uncalcined titanium silicate-1 catalysts[J]. ACS Catalysis, 2018, 8(9): 7799-7808. |
55 | QI C X, HUANG J H, BAO S Q, et al. Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2 [J]. Journal of Catalysis, 2011, 281(1): 12-20. |
56 | HUANG J H, TAKEI T, AKITA T, et al. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2 [J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 430-438. |
57 | LEE W S, LAI L C, AKATAY M CEM, et al. Probing the gold active sites in Au/TS-1 for gas-phase epoxidation of propylene in the presence of hydrogen and oxygen[J]. Journal of Catalysis, 2012, 296: 31-42. |
58 | LI Z S, ZHANG J H, WANG D Y, et al. Confirmation of gold active sites on titanium-silicalite-1-supported nano-gold catalysts for gas-phase epoxidation of propylene[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25215-25222. |
59 | FENG X, DUAN X Z, QIAN G, et al. Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2 [J]. Journal of Catalysis, 2014, 317: 99-104. |
60 | FENG X, SONG Z N, LIU Y B, et al. Manipulating gold spatial location on titanium silicalite-1 to enhance the catalytic performance for direct propene epoxidation with H2 and O2 [J]. ACS Catalysis, 2018, 8(11): 10649-10657. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |