化工进展 ›› 2022, Vol. 41 ›› Issue (2): 837-847.DOI: 10.16085/j.issn.1000-6613.2021-0552
武晨浩(), 李昆锋, 李肖华, 费志方, 张震, 杨自春()
收稿日期:
2021-03-18
修回日期:
2021-06-29
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
杨自春
作者简介:
武晨浩(1987—),男,硕士研究生,研究方向为船舶新材料。E-mail:基金资助:
WU Chenhao(), LI Kunfeng, LI Xiaohua, FEI Zhifang, ZHANG Zhen, YANG Zichun()
Received:
2021-03-18
Revised:
2021-06-29
Online:
2022-02-05
Published:
2022-02-23
Contact:
YANG Zichun
摘要:
二氧化硅气凝胶因具有低密度、高比表面积、稳定的物理化学性质等特性在吸附分离、隔热保温等领域表现出巨大的应用潜力。但长耗时、高成本的制备工艺限制了它的发展,尤其是湿凝胶向气凝胶转变的干燥工艺。本文介绍了二氧化硅气凝胶在常压干燥的过程中面临的主要难点及解决方法,虽然常压干燥方法工艺简单、过程安全、对设备要求低且可连续制备,成为近年来的研究热点,但也存在制备周期长、体积收缩大、需要消耗大量有机溶剂和改性剂等不足。文中从凝胶基体增强与优化、降低毛细管力与减少不可逆收缩两种角度,介绍了二氧化硅气凝胶常压干燥的改进方法及其发展现状,分析归纳了不同改进方法的优缺点,总结了二氧化硅气凝胶常压干燥目前面临的技术挑战。并且,立足于目前二氧化硅气凝胶基体增强和表面改性技术发展的趋势,对今后二氧化硅气凝胶常压干燥过程中结构可控、成本降低以及产品多功能化的发展路线进行了展望。
中图分类号:
武晨浩, 李昆锋, 李肖华, 费志方, 张震, 杨自春. 二氧化硅气凝胶常压干燥工艺的研究进展[J]. 化工进展, 2022, 41(2): 837-847.
WU Chenhao, LI Kunfeng, LI Xiaohua, FEI Zhifang, ZHANG Zhen, YANG Zichun. Research progress on preparation of silica aerogels at ambient pressure drying[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 837-847.
1 | KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741. |
2 | 何方, 吴菊英, 黃渝鸿, 等. 影响二氧化硅气凝胶隔热涂料热导率的因素[J]. 化工进展, 2014, 33(8): 2134-2139, 2169. |
HE Fang,WU Juying,HUANG Yuhong, et al. Effect of contents and sizes on the thermal conductivity of silica aerogel thermal insulation coatings[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2134-2139, 2169. | |
3 | NG S, JELLE B P, SANDBERG L I C, et al. Experimental investigations of aerogel-incorporated ultra-high performance concrete[J]. Construction and Building Materials, 2015, 77: 307-316. |
4 | LI X H, YANG Z C, LI K F, et al. A flexible silica aerogel with good thermal and acoustic insulation prepared via water solvent system[J]. Journal of Sol-Gel Science and Technology, 2019, 92(3): 652-661. |
5 | TALEBI Z, SOLTANI P, HABIBI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials, 2019, 220: 76-89. |
6 | CHEN Y X, HENDRIX Y, SCHOLLBACH K, et al. A silica aerogel synthesized from olivine and its application as a photocatalytic support[J]. Construction and Building Materials, 2020, 248: 118709. |
7 | MALEKI H, HÜSING N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: environmental protection aspects[J]. Applied Catalysis B: Environmental, 2018, 221: 530-555. |
8 | AMONETTE J E, MATYÁŠ J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review[J]. Microporous and Mesoporous Materials, 2017, 250: 100-119. |
9 | YANG X H, WU Z X, CHEN H F, et al. A facile preparation of ambient pressure-dried hydrophilic silica aerogels and their application in aqueous dye removal[J]. Frontiers in Materials, 2020, 7: 152. |
10 | MALEKI H, DURÃES L, GARCÍA-GONZÁLEZ C A, et al. Synthesis and biomedical applications of aerogels: possibilities and challenges[J]. Advances in Colloid and Interface Science, 2016, 236: 1-27. |
11 | MALEKI H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016, 300: 98-118. |
12 | JIANG X, KONG Y, ZHAO Z Y, et al. Spherical amine grafted silica aerogels for CO2 capture[J]. RSC Advances, 2020, 10(43): 25911-25917. |
13 | ULKER Z, ERKEY C. An emerging platform for drug delivery: aerogel based systems[J]. Journal of Controlled Release, 2014, 177: 51-63. |
14 | SHIN D, KIM J, KIM C, et al. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and derices[J]. Nature Communications, 2017, 8(1): 1-8. |
15 | EINARSRUD M A, HAEREID S. Preparation of transparent, monolithic silica xerogels with low density[J]. Journal of Sol-Gel Science and Technology, 1994, 2(1/2/3): 903-906. |
16 | HÆREID S, EINARSRUD M A, SCHERER G W. Mechanical strengthening of TMOS-based alcogels by aging in silane solutions[J]. Journal of Sol-Gel Science and Technology, 1994, 3(3): 199-204. |
17 | HÆREID S, DAHLE M, LIMA S, et al. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions[J]. Journal of Non-Crystalline Solids, 1995, 186: 96-103. |
18 | HE F, ZHAO H L, QU X H, et al. Modified aging process for silica aerogel[J]. Journal of Materials Processing Technology, 2009, 209(3): 1621-1626. |
19 | XU B, CAI J Y, FINN N, et al. An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure Part Ⅰ: process development and macrostructures of the aerogels[J]. Microporous and Mesoporous Materials, 2012, 148(1): 145-151. |
20 | XU B, CAI J Y, XIE Z L, et al. An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure part Ⅱ: microstructure and performance of the aerogels[J]. Microporous and Mesoporous Materials, 2012, 148(1): 152-158. |
21 | HAYASE G, KANAMORI K, MAENO A, et al. Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators[J]. Journal of Non-Crystalline Solids, 2016, 434: 115-119. |
22 | ZU G Q, SHIMIZU T, KANAMORI K, et al. Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying[J]. ACS Nano, 2018, 12(1): 521-532. |
23 | YUN S, LUO H J, GAO Y F. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity[J]. Journal of Materials Chemistry A, 2014, 2(35): 14542. |
24 | MULIK S, SOTIRIOU-LEVENTIS C, CHURU G, et al. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization[J]. Chemistry of Materials, 2008, 20(15): 5035-5046. |
25 | 师建军, 孔磊, 左小彪, 等. 酚醛/SiO2双体系凝胶网络结构杂化气凝胶的制备与性能[J]. 高分子学报, 2018(10): 1307-1314. |
SHI Jianjun, KONG Lei, ZUO Xiaobiao, et al. Preparation of PR/SiO2 hybrid phenolic aerogel with Bi-component gel networks[J]. Acta Polymerica Sinica, 2018(10): 1307-1314. | |
26 | SHAO Z D, WU G Y, CHENG X, et al. Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2012, 358(18/19): 2612-2615. |
27 | YANG H L, KONG X M, ZHANG Y R, et al. Mechanical properties of polymer-modified silica aerogels dried under ambient pressure[J]. Journal of Non-Crystalline Solids, 2011, 357(19/20): 3447-3453. |
28 | KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020, 276: 102101. |
29 | SHIMIZU T, KANAMORI K, MAENO A, et al. Transparent, highly insulating polyethyl-and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying[J]. Chemistry of Materials, 2016, 28(19): 6860-6868. |
30 | BANANIFARD H, ASHJARI M, NIAZI Z, et al. Efficient reinforcement of wet gel by embedded polymer as newly approach for silica aerogel[J]. Polymers for Advanced Technologies, 2020, 31(12): 3174-3181. |
31 | YUN S, LUO H J, GAO Y F. Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels[J]. Journal of Materials Chemistry A, 2015, 3(7): 3390-3398. |
32 | CHEN D J, GAO H Y, LIU P P, et al. Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents[J]. RSC Advances, 2019, 9(15): 8664-8671. |
33 | 刘洪丽, 褚鹏, 李洪彦, 等. 聚氨酯增强二氧化硅气凝胶常压干燥制备及其性能[J]. 人工晶体学报, 2015, 44(12): 3532-3536. |
LIU Hongli, CHU Peng, LI Hongyan, et al. Preparation and properties of silica aerogels reinforced using polyurethanes via ambient pressure drying[J]. Journal of Synthetic Crystals, 2015, 44(12): 3532-3536. | |
34 | ZU G Q, KANAMORI K, SHIMIZU T, et al. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators[J]. Chemistry of Materials, 2018, 30(8): 2759-2770. |
35 | PARMENTER K E, MILSTEIN F. Mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1998, 223(3): 179-189. |
36 | 吕伯昇, 秦磊, 茹瑞, 等. 新型纳米颗粒/SiO2复合气凝胶制备及吸附催化应用进展[J]. 化工进展, 2020, 39(12): 5095-5103. |
Bosheng LYU, QIN Lei, RU Rui, et al. Progress on the preparation of nanomaterials-SiO2 aerogel composites and their applications in adsorption and catalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5095-5103. | |
37 | ŚLOSARCZYK A. Recent advances in research on the synthetic fiber based silica aerogel nanocomposites[J]. Nanomaterials, 2017, 7(2): 44. |
38 | LI Z, CHENG X D, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325. |
39 | LI M, JIANG H Y, XU D, et al. A facile method to prepare cellulose whiskers-silica aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2017, 83(1): 72-80. |
40 | MARKEVICIUS G, LADJ R, NIEMEYER P, et al. Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers[J]. Journal of Materials Science, 2017, 52(4): 2210-2221. |
41 | 田佳琦, 谭慧君, Shafi Sameera, 等. O2等离子体改性玻璃纤维增强SiO2气凝胶复合材料的制备及表征[J]. 复合材料科学与工程, 2020(7): 45-52. |
TIAN Jiaqi, TAN Huijun, SAMEERA S, et al. Preparation and characterization of silica aerogel composite reinforced by oxygen plasma modified glass fiber[J]. Composites Science and Engineering, 2020(7): 45-52. | |
42 | SHAO Z D, HE X Y, NIU Z W, et al. Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths[J]. Materials Chemistry and Physics, 2015, 162: 346-353. |
43 | 王宝民, 宋凯, 马海楠. 纳米碳纤维掺杂气凝胶的合成及性能[J]. 哈尔滨工程大学学报, 2013, 34(5): 604-608. |
WANG Baomin, SONG Kai, MA Hainan. Synthesis and characterization of carbon nanofibers doped silica aerogels[J]. Journal of Harbin Engineering University, 2013, 34(5): 604-608. | |
44 | LIU H L, HE X, LI H Y, et al. Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure[J]. Ferroelectrics, 2018, 528(1): 15-21. |
45 | LIU H L, CHU P, LI H Y, et al. Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure[J]. Journal of Sol-Gel Science and Technology, 2016, 80(3): 651-659. |
46 | LI J, LEI Y, XU D D, et al. Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure[J]. Journal of Sol-Gel Science and Technology, 2017, 82(3): 702-711. |
47 | ŚLOSARCZYK A, BAREŁKOWSKi M, NIEMIER S, et al. Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions[J]. Journal of Sol-Gel Science and Technology, 2015, 76(1): 227-232. |
48 | ŚLOSARCZYK A, WOJCIECH S, PIOTR Z, et al. Synthesis and characterization of carbon fiber/silica aerogel nanocomposites[J]. Journal of Non-Crystalline Solids, 2015, 416: 1-3. |
49 | TANG X B, SUN A H, CHU C Y, et al. A novel silica nanowire-silica composite aerogels dried at ambient pressure[J]. Materials & Design, 2017, 115: 415-421. |
50 | RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents[J]. Journal of Sol-Gel Science and Technology, 2005, 36(3): 285-292. |
51 | PRAKASH S S, BRINKER C J, HURD A J, et al. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage[J]. Nature, 1995, 374(6521): 439-443. |
52 | PRAKASH S S, BRINKER C J, HURD A J. Silica aerogel films at ambient pressure[J]. Journal of Non-Crystalline Solids, 1995, 190(3): 264-275. |
53 | BRINKER C, PRAKASH S. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films: US5948482[P]. 1999-09-07. |
54 | BRINKER C J, SCHERER G W. Sol-gel science: the physics and chemistry of sol-gel processing[M]. Salt Lake City: Academic Press, 2013. |
55 | 卢斌, 孙俊艳, 魏琪青, 等. 酸种类对以硅溶胶为原料、常压制备的SiO2气凝胶性能的影响[J]. 硅酸盐学报, 2013, 41(2): 153-158. |
LU Bin, SUN Junyan, WEI Qiqing, et al. Effect of acids on the properties of silica aerogels prepared from silica sol at ambient pressure[J]. Journal of the Chinese Ceramic Society, 2013, 41(2) :153-158. | |
56 | RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents[J]. Applied Surface Science, 2007, 253(14): 6032-6040. |
57 | LI T M, DU A, ZHANG T, et al. Efficient preparation of crack-free, low-density and transparent polymethylsilsesquioxane aerogels via ambient pressure drying and surface modification[J]. RSC Advances, 2018, 8(32): 17967-17975. |
58 | SCHWERTFEGER F, FRANK D, SCHMIDT M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying[J]. Journal of Non-Crystalline Solids, 1998, 225: 24-29. |
59 | SHI F, WANG L J, LIU J X. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process[J]. Materials Letters, 2006, 60(29/30): 3718-3722. |
60 | HWANG S W, JUNG H H, HYUN S H, et al. Effective preparation of crack-free silica aerogels via ambient drying[J]. Journal of Sol-Gel Science and Technology, 2007, 41(2): 139-146. |
61 | ÇOK S S, GIZLI N. Hydrophobic silica aerogels synthesized in ambient conditions by preserving the pore structure via two-step silylation[J]. Ceramics International, 2020, 46(17): 27789-27799. |
62 | TORRES R B, VAREDA J P, LAMY-MENDES A, et al. Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels[J]. The Journal of Supercritical Fluids, 2019, 147: 81-89. |
63 | 任富建, 杨万吉, 张蕊, 等. 疏水二氧化硅气凝胶的常压制备及性能研究[J]. 无机盐工业, 2015, 47(10): 38-40. |
REN Fujian, YANG Wanji, ZHANG Rui, et al. Synthesis and characterization of hydrophobic silica aerogels via ambient pressure drying[J]. Inorganic Chemicals Industry, 2015, 47(10): 38-40. | |
64 | 卢斌, 周强, 宋淼, 等. 干燥溶剂介质对常压制备SiO2气凝胶的影响[J]. 中南大学学报(自然科学版), 2012, 43(7): 2560-2565. |
LU Bin, ZHOU Qiang, SONG Miao, et al. Influence of drying solvents on silica aerogels at ambient pressure[J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2560-2565. | |
65 | 李贵安, 朱庭良, 叶录元, 等. 原位法常压干燥制备疏水SiO2气凝胶及其热稳定性[J]. 物理化学学报, 2009, 25(9): 1811-1815. |
LI Gui’an, ZHU Tingliang, YE Luyuan, et al. Hydrophobic silica aerogel prepared in situ by ambient pressure drying and its thermal stability[J]. Acta Physico-Chimica Sinica, 2009, 25(9): 1811-1815. | |
66 | WU G Y, YU Y X, CHENG X, et al. Preparation and surface modification mechanism of silica aerogels via ambient pressure drying[J]. Materials Chemistry and Physics, 2011, 129(1/2): 308-314. |
67 | SHAO Z D, LUO F Z, CHENG X, et al. Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying[J]. Materials Chemistry and Physics, 2013, 141(1): 570-575. |
68 | NAH H Y, KIM Y, KIM T, et al. Comparisonal studies of surface modification reaction using various silylating agents for silica aerogel[J]. Journal of Sol-Gel Science and Technology, 2020, 96(2): 346-359. |
69 | 李肖华, 杨自春, 李昆锋, 等. 以MTES为硅源制备透明可压缩的甲基倍半硅氧烷气凝胶及其表征[J]. 化工进展, 2020, 39(3): 1115-1121. |
LI Xiaohua, YANG Zichun, LI Kunfeng, et al. Preparation and characterization of transparent and compressible methylsilsesquioxane aerogels using MTES as precursor[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1115-1121. | |
70 | 曲康, 浦群, 单国荣. 有机-无机杂化柔性硅气凝胶的制备与表征[J]. 化工学报, 2014, 65(1): 346-351. |
QU Kang, PU Qun, SHAN Guorong. Preparation and characterization of organic-inorganic hybrid flexible silica aerogel[J]. CIESC Journal, 2014, 65(1): 346-351. | |
71 | LOY D A, BAUGHER B M, BAUGHER C R, et al. Substituent effects on the Sol-gel chemistry of organotrialkoxysilanes[J]. Chemistry of Materials, 2000, 12(12): 3624-3632. |
72 | KANAMORI K, AIZAWA M, NAKANISHI K, et al. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties[J]. Advanced Materials, 2007, 19(12): 1589-1593. |
73 | HAYASE G, KANAMORI K, NAKANISHI K. Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride[J]. Microporous and Mesoporous Materials, 2012, 158: 247-252. |
74 | KANAMORI K, AIZAWA M, NAKANISHI K, et al. Elastic organic-inorganic hybrid aerogels and xerogels[J]. Journal of Sol-Gel Science and Technology, 2008, 48(1/2): 172-181. |
75 | ZHANG Y, XIANG L, SHEN Q Q, et al. Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity[J]. Journal of Non-Crystalline Solids, 2021, 555: 120547. |
76 | WU X D, ZHONG K, DING J, et al. Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique[J]. Journal of Non-Crystalline Solids, 2020, 530: 119826. |
77 | LI Z, CHENG X D, HE S, et al. Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration[J]. Materials Letters, 2014, 129: 12-15. |
78 | EL-SHAHIDY M M, SHALABY A S A, SHELTAWY S T EL. Oil spills clean-up by super hydrophobic organo-modified silica aerogel monoliths treated by different solvents in ambient condition[J]. Materials Research Express, 2019, 6(10): 105546. |
79 | LI Z, CHENG X D, HE S, et al. Tailoring thermal properties of ambient pressure dried MTMS/TEOS co-precursor aerogels[J]. Materials Letters, 2016, 171: 91-94. |
80 | LUO Y, LI Z, ZHANG W, et al. Rapid synthesis and characterization of ambient pressure dried monolithic silica aerogels in ethanol/water co-solvent system[J]. Journal of Non-Crystalline Solids, 2019, 503/504: 214-223. |
81 | GAO H Y, BO L J, LIU P P, et al. Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110122. |
82 | VAREDA J P, MATIAS T, DURÃES L. Facile preparation of ambient pressure dried aerogel-like monoliths with reduced shrinkage based on vinyl-modified silica networks[J]. Ceramics International, 2018, 44(14): 17453-17458. |
83 | DING J, ZHONG K, LIU S J, et al. Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique[J]. Powder Technology, 2020, 373: 716-726. |
84 | SARAWADE P B, SHAO G N, QUANG D V, et al. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure[J]. Applied Surface Science, 2013, 287: 84-90. |
85 | KURAHASHI M, KANAMORI K, TAKEDA K, et al. Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems[J]. RSC Advances, 2012, 2(18): 7166. |
86 | HAYASE G, KUGIMIYA K, OGAWA M, et al. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators[J]. Journal of Materials Chemistry A, 2014, 2(18): 6525-6531. |
87 | CHENG X D, LI C C, SHI X J, et al. Rapid synthesis of ambient pressure dried monolithic silica aerogels using water as the only solvent[J]. Materials Letters, 2017, 204: 157-160. |
88 | NIU Z W, HE X Y, HUANG T, et al. A facile preparation of transparent methyltriethoxysilane based silica xerogel monoliths at ambient pressure drying[J]. Microporous and Mesoporous Materials, 2019, 286: 98-104. |
89 | YUN S, GUO T, ZHANG J D, et al. Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying[J]. Journal of Sol-Gel Science and Technology, 2017, 83(1): 53-63. |
90 | CAI L, SHAN G R. Elastic silica aerogel using methyltrimethoxysilane precusor via ambient pressure drying[J]. Journal of Porous Materials, 2015, 22(6): 1455-1463. |
91 | HE S, LI Z, SHI X J, et al. Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area[J]. Advanced Powder Technology, 2015, 26(2): 537-541. |
92 | HE S, HUANG D M, BI H J, et al. Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass[J]. Journal of Non-Crystalline Solids, 2015, 410: 58-64. |
93 | KIM C E, YOON J S, HWANG H J. Synthesis of nanoporous silica aerogel by ambient pressure drying[J]. Journal of Sol-Gel Science and Technology, 2008, 49(1): 47-52. |
94 | LIU M X, GAN L H, PANG Y C, et al. Synthesis of titania-silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 490-495. |
95 | HE S, YANG H, CHEN X F. Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation[J]. Journal of Sol-Gel Science and Technology, 2017, 82(2): 407-416. |
96 | NAH H Y, PARALE V G, JUNG H N R, et al. Role of oxalic acid in structural formation of sodium silicate-based silica aerogel by ambient pressure drying[J]. Journal of Sol-Gel Science and Technology, 2018, 85(2): 302-310. |
97 | NOCENTINI K, ACHARD P, BIWOLE P, et al. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation[J]. Energy and Buildings, 2018, 158: 14-22. |
98 | HAN X, HASSAN K T, HARVEY A, et al. Bioinspired synthesis of monolithic and layered aerogels[J]. Advanced Materials, 2018, 30(23): 1706294. |
99 | LU J L, WANG J B, HASSAN K T, et al. Morphology control of nickel nanoparticles prepared insitu within silica aerogels produced by novel ambient pressure drying[J]. Scientific Reports, 2020, 10: 11743. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[5] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[6] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[7] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[8] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[9] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
[10] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[11] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[12] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
[13] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[14] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[15] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |