化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 323-339.DOI: 10.16085/j.issn.1000-6613.2025-0250

• 材料科学与技术 • 上一篇    

面向高效储氢MOFs的设计构筑与性能调控研究现状分析及展望

王瑞琪1(), 刘浩伟1,2, 孙彦丽3, 李荣花1, 王政4, 吴玉花1, 吴建波1, 张慧1, 白红存1,2()   

  1. 1.宁夏大学化学化工学院,宁夏 银川 750021
    2.六盘山实验室,宁夏 银川 750004
    3.中国人民解放军军事科学院系统工程研究院,北京 102300
    4.宁夏大学材料与新能源学院,宁夏 银川 750021
  • 收稿日期:2025-02-21 修回日期:2025-05-08 出版日期:2025-10-25 发布日期:2025-11-24
  • 通讯作者: 白红存
  • 作者简介:王瑞琪(2000—),女,硕士研究生,研究方向为储氢材料设计与合成。E-mail:2253842349@qq.com
  • 基金资助:
    国家自然科学基金(22478206);国家自然科学基金(22169015);六盘山实验室基础科研项目(LPS-2025-KY-D-JC-0019)

Analysis and outlook on the current research state in design, construction and performance regulation of MOFs for efficient hydrogen storage

WANG Ruiqi1(), LIU Haowei1,2, SUN Yanli3, LI Ronghua1, WANG Zheng4, WU Yuhua1, WU Jianbo1, ZHANG Hui1, BAI Hongcun1,2()   

  1. 1.College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
    2.Liupanshan Laboratory, Yinchuan 750004, Ningxia, China
    3.Institute of Systems Engineering, Academy of Military Sciences, PLA, Beijing 102300, China
    4.School of Materials and New Energy, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2025-02-21 Revised:2025-05-08 Online:2025-10-25 Published:2025-11-24
  • Contact: BAI Hongcun

摘要:

高效固态储氢材料是氢能安全储运的重要物质基础,也是氢能规模化应用的关键技术问题,对实现“双碳”目标和高质量发展具有重要意义。金属有机骨架(MOFs)材料因比表面积大、稳定性高、结构多样和可定制等优点近年来发展迅速,已成为国际储氢领域的研究重点。MOFs储氢尽管低温表现较好,但室温储氢性能仍不理想,主要受限于氢气与MOFs之间结合较弱。因此,在对MOFs微观结构以及与氢分子相互作用深刻认识基础上开展面向高效储氢MOFs的设计构筑及性能调控研究至关重要。本文综述了MOFs储氢的设计构筑及性能调控的研究现状,并对其未来发展方向进行了展望。重点围绕金属中心和有机配体的选择与组装、MOFs的拓扑结构及其调控机制、低温和室温条件下MOFs储氢的研究进展与应用进行了系统总结。研究分析表明,MOFs的孔道结构是储氢的核心特征;金属中心和有机配体的电子性质对MOFs吸附氢分子影响显著;精确调控孔道结构、孔径设计、金属中心及其有机配体是实现面向高效储氢的MOFs设计构筑的关键路径。此外,引入开放金属位点、功能化有机配体以及纳米粒子,可以显著增强MOFs与氢分子之间的相互作用力,从而提高其储氢性能。针对MOFs储氢研究的应用前景及未来发展,建议从人工智能驱动下储氢MOFs材料设计、储氢性能指标提升、材料规模化低成本制备、扩展MOFs储氢应用等方面持续开展基础研究和技术研发。本文可为面向储氢的MOFs材料高效构筑提供理论支持和指导,助力氢能的高效安全储运。

关键词: 固态储氢, 多孔材料, 金属有机骨架, 合成, 优化设计, 吸附剂

Abstract:

Efficient solid-state hydrogen storage materials serve as a crucial material foundation for the safe storage and transportation of hydrogen energy. They also represent a key technological bottleneck for the large-scale application of hydrogen energy, holding significant importance for achieving the dual carbon goals and high-quality development. Metal organic frameworks (MOFs) have developed rapidly in recent years due to their large specific surface area, high stability, diverse structures and customizability, and have become a research focus in the international hydrogen storage field. Although MOFs perform well at low temperatures, room temperature hydrogen storage is still not idea mainly due to weak binding between hydrogen and MOFs. Therefore, it is crucial to conduct research on the design, construction and performance regulation of efficient hydrogen storage MOFs based on a deep understanding of the microstructure of MOFs and their interactions with hydrogen molecules. This article reviewed the current research status of the design, construction and performance regulation of MOFs for hydrogen storage, and provided prospects for their future development directions. A systematic summary was conducted on the selection and assembly of metal centers and organic ligands, the topological structure and regulatory mechanism of MOFs and the research progress and applications of hydrogen storage in MOFs under low and room temperature conditions. Research analysis showed that the pore structure of MOFs was the core feature of hydrogen storage. The electronic properties of metal centers and organic ligands had a significant impact on the adsorption of hydrogen molecules by MOFs. Accurate regulation of pore structure, pore size design, metal centers and their organic ligands was a key pathway for the design and construction of MOFs for efficient hydrogen storage. In addition, by introducing open metal sites, functionalized organic ligands and nanoparticle composites, the interaction force between MOFs and hydrogen molecules can be significantly enhanced, thereby improving hydrogen storage performance. Regarding the application prospects and future development of hydrogen storage research using MOFs, it was recommended to continue basic research and technological development in areas such as artificial intelligence driven hydrogen storage MOFs material design, improvement of hydrogen storage performance indicators, low-cost material scale preparation and expansion of MOFs hydrogen storage applications. This review can provide theoretical support and guidance for the efficient construction of MOFs materials for hydrogen storage, and assist in the efficient and safe storage and transportation of hydrogen energy.

Key words: solid state hydrogen storage, porous materials, metal organic frameworks, synthesis, optimize design, adsorbent

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn