化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 159-177.DOI: 10.16085/j.issn.1000-6613.2025-0347
• 工业催化 • 上一篇
收稿日期:2025-03-07
修回日期:2025-05-18
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
王雪芹
作者简介:林已杰(2003—),男,本科,研究方向为纳米催化材料制备、光催化制氢。E-mail:1256519561@qq.com。
基金资助:
LIN Yijie(
), QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin(
)
Received:2025-03-07
Revised:2025-05-18
Online:2025-10-25
Published:2025-11-24
Contact:
WANG Xueqin
摘要:
TiO2光催化剂具有氧化能力强、化学稳定性高等优点,其结构的调控和设计对光催化反应性能的提高有着重要意义。科研人员发现构建异质结是提升TiO2光催化性能的最有效的方法之一。本文总结了Ⅱ型、p-n型、Z型、S型、肖特基型5类异质结的机理,介绍了光催化性能优异的TiO2纳米异质结材料,并对各类异质结的光催化性能进行了讨论分析。此外,本文还简述了制备异质结的方法以及TiO2在有机废水的降解、有害气体的治理、光解水制氢和生物医药等方面的应用,展示了其重要价值。最后,针对TiO2异质结的构建进行了分析,提出了有效提高TiO2光催化性能的研究方向,并对未来进行了展望。
中图分类号:
林已杰, 乔鹏, 李心睿, 张宏斌, 王雪芹. TiO2纳米光催化剂的异质结构建策略与应用研究进展[J]. 化工进展, 2025, 44(S1): 159-177.
LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177.
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 参考文献 |
|---|---|---|---|---|---|
| TiO2/UiO-66-NH₂ | 溶剂热法 | 2.72 | 光解水制氢 | 产氢速率比原始TiO2提高了3.2倍 | [ |
| In2O3/TiO2 | 浸渍法 | 2.19 | 有机污染物降解 | 氧化Hg0的光催化效率达到61.1% | [ |
| TiO2/ZnIn2S4/Co-Pi | 水热法 | 2.55 | 光解水制氢 | 光电流密度达5.05mA/cm2,是原始TiO2的4.8倍 | [ |
| TiO2/SrTiO3 | 水热法 | 2.57 | 光解水制氢 | 可见光下产氢速率达807.7μmol/(h·g),比纯TiO2纳米管高26倍 | [ |
| C-TiO2/CoTiO3 | 直接煅烧法 | 2.25 | 有机污染物降解 | 可见光下2h内降解99.6%环丙沙星 | [ |
| SnS2/H-TiO2 | 化学气相沉积法 | 2.26 | 光解水制氢 | 光电流密度达4.0mA/cm2 | [ |
| TiO2:SnO2 | 水热法 | 2.43 | 有害气体的治理 | 氧化甲烷生成甲醇[30μmol/(cm2·h)]和乙酸[8μmol/(cm2·h)] | [ |
| MoS2/TiO2 | 水热法 | 1.13 | 有机污染物降解 | 可见光下2h内降解98.3%四环素 | [ |
| Bi2O4/TiO2 | 溶剂热法 | 1.94 | 有机污染物降解 | 可见光下90min降解96%甲基橙(MO) | [ |
| TiO2锐钛矿-金红石异相结 | 碱诱导法 | 2.65 | 光解水制氢 | 模拟太阳光下的产氢速率达34.35mmol/(h·g) | [ |
表1 Ⅱ型异质结
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 参考文献 |
|---|---|---|---|---|---|
| TiO2/UiO-66-NH₂ | 溶剂热法 | 2.72 | 光解水制氢 | 产氢速率比原始TiO2提高了3.2倍 | [ |
| In2O3/TiO2 | 浸渍法 | 2.19 | 有机污染物降解 | 氧化Hg0的光催化效率达到61.1% | [ |
| TiO2/ZnIn2S4/Co-Pi | 水热法 | 2.55 | 光解水制氢 | 光电流密度达5.05mA/cm2,是原始TiO2的4.8倍 | [ |
| TiO2/SrTiO3 | 水热法 | 2.57 | 光解水制氢 | 可见光下产氢速率达807.7μmol/(h·g),比纯TiO2纳米管高26倍 | [ |
| C-TiO2/CoTiO3 | 直接煅烧法 | 2.25 | 有机污染物降解 | 可见光下2h内降解99.6%环丙沙星 | [ |
| SnS2/H-TiO2 | 化学气相沉积法 | 2.26 | 光解水制氢 | 光电流密度达4.0mA/cm2 | [ |
| TiO2:SnO2 | 水热法 | 2.43 | 有害气体的治理 | 氧化甲烷生成甲醇[30μmol/(cm2·h)]和乙酸[8μmol/(cm2·h)] | [ |
| MoS2/TiO2 | 水热法 | 1.13 | 有机污染物降解 | 可见光下2h内降解98.3%四环素 | [ |
| Bi2O4/TiO2 | 溶剂热法 | 1.94 | 有机污染物降解 | 可见光下90min降解96%甲基橙(MO) | [ |
| TiO2锐钛矿-金红石异相结 | 碱诱导法 | 2.65 | 光解水制氢 | 模拟太阳光下的产氢速率达34.35mmol/(h·g) | [ |
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 参考文献 |
|---|---|---|---|---|---|
| NiS/TiO2 | 水热法 | 1.10 | 有机污染物降解 | 在20min内实现了98%甲基橙的降解 | [ |
| 氧空位(OVs)-BiOCl/TiO2-δ | 溶胶-凝胶法 | 2.88 | 有机污染物降解 | 在可见光下表观反应速率常数(0.0636/min)是TiO2-δ(0.0026/min)的24倍 | [ |
| BiOCl/TiO2 | 溶剂热法 | 2.67 | 有机污染物降解 | 可见光下四环素降解率为82%,而诺氟沙星、环丙沙星、土霉素的降解率均在90%以上 | [ |
| γ-石墨炔/TiO2 | 机械化学法 | 2.27 | 光解水制氢 | 可见光下光电流密度为1.31mA/cm,是原始TiO2的1.7倍 | [ |
| TiO2量子点(QDs)/ZnBi2O4 | 水热法 | 2.20 | 有机污染物降解 | 可见光下罗丹明B的降解速率常数为1022×10-4min-1,约为TiO2和TiO2 QDs的77倍和5.9倍 | [ |
| TiO2纳米管阵列(NTs)/Bi2S3-BiOI | 溶剂热法 | 1.38 | 有机污染物降解 | 可见光下光电流密度为2.42mA/cm2,可降解93.6%罗丹明B、85.5%甲基橙、94.9%甲基蓝和99.1% Cr(Ⅵ) | [ |
| FeOOH@C/TiO2@Fe3O4 | 水解和共沉淀法 | 2.40 | 有机污染物降解 | 可见光下12min内完全去除As(Ⅲ) | [ |
| ZnFe2O4/TiO2 | 溶胶-凝胶法 | 2.32 | 有机污染物降解 | 可见光下90min降解NH4+-N 98.52% | [ |
| ZnO-TiO2 | 磁控溅射法 | 2.85 | 抗菌 | 可见光下12h的杀菌率达到99.82% | [ |
表2 p-n型异质结
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 参考文献 |
|---|---|---|---|---|---|
| NiS/TiO2 | 水热法 | 1.10 | 有机污染物降解 | 在20min内实现了98%甲基橙的降解 | [ |
| 氧空位(OVs)-BiOCl/TiO2-δ | 溶胶-凝胶法 | 2.88 | 有机污染物降解 | 在可见光下表观反应速率常数(0.0636/min)是TiO2-δ(0.0026/min)的24倍 | [ |
| BiOCl/TiO2 | 溶剂热法 | 2.67 | 有机污染物降解 | 可见光下四环素降解率为82%,而诺氟沙星、环丙沙星、土霉素的降解率均在90%以上 | [ |
| γ-石墨炔/TiO2 | 机械化学法 | 2.27 | 光解水制氢 | 可见光下光电流密度为1.31mA/cm,是原始TiO2的1.7倍 | [ |
| TiO2量子点(QDs)/ZnBi2O4 | 水热法 | 2.20 | 有机污染物降解 | 可见光下罗丹明B的降解速率常数为1022×10-4min-1,约为TiO2和TiO2 QDs的77倍和5.9倍 | [ |
| TiO2纳米管阵列(NTs)/Bi2S3-BiOI | 溶剂热法 | 1.38 | 有机污染物降解 | 可见光下光电流密度为2.42mA/cm2,可降解93.6%罗丹明B、85.5%甲基橙、94.9%甲基蓝和99.1% Cr(Ⅵ) | [ |
| FeOOH@C/TiO2@Fe3O4 | 水解和共沉淀法 | 2.40 | 有机污染物降解 | 可见光下12min内完全去除As(Ⅲ) | [ |
| ZnFe2O4/TiO2 | 溶胶-凝胶法 | 2.32 | 有机污染物降解 | 可见光下90min降解NH4+-N 98.52% | [ |
| ZnO-TiO2 | 磁控溅射法 | 2.85 | 抗菌 | 可见光下12h的杀菌率达到99.82% | [ |
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 文献 |
|---|---|---|---|---|---|
| NCDs/TNS-001 | 水热法 | 2.32 | 有机污染物降解 | 在可见光下60min对二氯荧光素的降解率达91.5% | [ |
| Bi4Ti3O12/Bi2O3/Bi12TiO20 | 溶胶-凝胶法 | 3.18 | 有机污染物降解 | 在可见光下100min对17β-雌二醇的降解率达100% | [ |
| 聚(二苯基丁二烯)(PDPB)/TiO2 | 原位合成法 | 2.32 | 有机污染物降解 | 在可见光下对罗丹明B的降解率为455.5mg/(h·gc) | [ |
| TiO2/NiO/g-C3N4 | 浸渍法 | 2.73 | 有机污染物降解 | 在可见光下2h对柴油的降解率为98.94% | [ |
| 共价有机骨架(COF)-318-TiO2 | 溶剂热法 | 1.41 | 有害气体的治理 | 在可见光下CO2到CO的转换效率达69.67μmol/(h·g) | [ |
| AgI/N-TiO2 | 水热法 | 2.23 | 有机污染物降解 | 在可见光下105min对四环素的降解率达79% | [ |
| TiO2@MIL-101(Cr) | 水热法 | 2.47 | 有机污染物降解 | 在紫外光下对甲苯去除效率比MIL-101(Cr)高23.28%,比纯TiO2高26.88% | [ |
| AgIO4/TiO2 | 声化学法 | 1.82 | 光解水制氢 | 在可见光下的析氢速率接近8.4mmol/(h·g) | [ |
| TiO2/PPy | 物理混合法 | 2.94 | 有机污染物降解 | 在可见光下2h完全降解活性橙16 | [ |
表3 Z型异质结
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 文献 |
|---|---|---|---|---|---|
| NCDs/TNS-001 | 水热法 | 2.32 | 有机污染物降解 | 在可见光下60min对二氯荧光素的降解率达91.5% | [ |
| Bi4Ti3O12/Bi2O3/Bi12TiO20 | 溶胶-凝胶法 | 3.18 | 有机污染物降解 | 在可见光下100min对17β-雌二醇的降解率达100% | [ |
| 聚(二苯基丁二烯)(PDPB)/TiO2 | 原位合成法 | 2.32 | 有机污染物降解 | 在可见光下对罗丹明B的降解率为455.5mg/(h·gc) | [ |
| TiO2/NiO/g-C3N4 | 浸渍法 | 2.73 | 有机污染物降解 | 在可见光下2h对柴油的降解率为98.94% | [ |
| 共价有机骨架(COF)-318-TiO2 | 溶剂热法 | 1.41 | 有害气体的治理 | 在可见光下CO2到CO的转换效率达69.67μmol/(h·g) | [ |
| AgI/N-TiO2 | 水热法 | 2.23 | 有机污染物降解 | 在可见光下105min对四环素的降解率达79% | [ |
| TiO2@MIL-101(Cr) | 水热法 | 2.47 | 有机污染物降解 | 在紫外光下对甲苯去除效率比MIL-101(Cr)高23.28%,比纯TiO2高26.88% | [ |
| AgIO4/TiO2 | 声化学法 | 1.82 | 光解水制氢 | 在可见光下的析氢速率接近8.4mmol/(h·g) | [ |
| TiO2/PPy | 物理混合法 | 2.94 | 有机污染物降解 | 在可见光下2h完全降解活性橙16 | [ |
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 参考文献 |
|---|---|---|---|---|---|
| ZnCO2S4/TiO2 | 溶剂热法 | 3.10 | 光解水制氢和有机污染物降解 | 在可见光下的析氢效率达到5580μmol/(h·g) | [ |
| TiO2/In2S3 | 静电纺丝法和水热法 | 1.62 | 生产过氧化氢 | 在可见光下H2O2的产率达376µmol/(L·h) | [ |
| 聚噻吩类线性共轭聚合物(PB-C)/TiO2 | 溶剂热法 | 2.06 | 抗菌 | 在全波段白光照射20min下消除了3.86×107CFU/mL的耐甲氧西林金黄色葡萄球菌 | [ |
| In2S3/TiO2 | 一锅水热法 | 2.43 | 有机污染物降解 | 在可见光下对四环素的降解率达97.3% | [ |
| CeO2/TiO2 | 溶剂热法 | 2.32 | 有机污染物降解 | 在可见光下降解盐酸四环素的反应速率常数为0.01525min-1,分别为TiO2和CeO2的1.04倍和1.81倍 | [ |
| TiO2/Mn0.2Cd0.8S | 水热法 | 1.88 | 光解水制氢 | 在可见光下的析氢速率达到3197μmol/(h·g) | [ |
| C3N5/TiO2 | 水热法 | 2.67 | 有机污染物降解 | 在可见光下降解加替沙星的反应速率常数为0.0252min-1,是纯TiO的1.85倍 | [ |
| Cu-卟啉/TiO2 | 溶剂热 | 1.27 | 有害气体的治理 | 分别在可见光和太阳光照射下还原CO2,释放CO的速率分别为56μmol/(h·g)和73μmol/(h·g) | [ |
表4 S型异质结
| 异质结 | 制备方法 | 禁带宽度Eg/eV | 应用 | 活性效果 | 参考文献 |
|---|---|---|---|---|---|
| ZnCO2S4/TiO2 | 溶剂热法 | 3.10 | 光解水制氢和有机污染物降解 | 在可见光下的析氢效率达到5580μmol/(h·g) | [ |
| TiO2/In2S3 | 静电纺丝法和水热法 | 1.62 | 生产过氧化氢 | 在可见光下H2O2的产率达376µmol/(L·h) | [ |
| 聚噻吩类线性共轭聚合物(PB-C)/TiO2 | 溶剂热法 | 2.06 | 抗菌 | 在全波段白光照射20min下消除了3.86×107CFU/mL的耐甲氧西林金黄色葡萄球菌 | [ |
| In2S3/TiO2 | 一锅水热法 | 2.43 | 有机污染物降解 | 在可见光下对四环素的降解率达97.3% | [ |
| CeO2/TiO2 | 溶剂热法 | 2.32 | 有机污染物降解 | 在可见光下降解盐酸四环素的反应速率常数为0.01525min-1,分别为TiO2和CeO2的1.04倍和1.81倍 | [ |
| TiO2/Mn0.2Cd0.8S | 水热法 | 1.88 | 光解水制氢 | 在可见光下的析氢速率达到3197μmol/(h·g) | [ |
| C3N5/TiO2 | 水热法 | 2.67 | 有机污染物降解 | 在可见光下降解加替沙星的反应速率常数为0.0252min-1,是纯TiO的1.85倍 | [ |
| Cu-卟啉/TiO2 | 溶剂热 | 1.27 | 有害气体的治理 | 分别在可见光和太阳光照射下还原CO2,释放CO的速率分别为56μmol/(h·g)和73μmol/(h·g) | [ |
| 异质结 | 制备方法 | 产氢效果 | 参考文献 |
|---|---|---|---|
| 黑磷/TiO2 | 溶剂热法 | 可见光下139.50μmol/(h·g) | [ |
| PDBCOOH/TiO2 | 共价锚定法 | 可见光下11.9mmol/(h·g) | [ |
| TiO2的锐钛矿-金红石异质结 | 碱诱导法 | 模拟太阳光下34.35mmol/(h·g) | [ |
| TiO2/BiVO4 | 脉冲激光沉积法 | 可见光下14.2μmol/(cm·h) | [ |
| TiO2-MoS2-CdS | 沉积法 | 模拟太阳光下328μmol/(h·g) | [ |
表5 部分光解水研究
| 异质结 | 制备方法 | 产氢效果 | 参考文献 |
|---|---|---|---|
| 黑磷/TiO2 | 溶剂热法 | 可见光下139.50μmol/(h·g) | [ |
| PDBCOOH/TiO2 | 共价锚定法 | 可见光下11.9mmol/(h·g) | [ |
| TiO2的锐钛矿-金红石异质结 | 碱诱导法 | 模拟太阳光下34.35mmol/(h·g) | [ |
| TiO2/BiVO4 | 脉冲激光沉积法 | 可见光下14.2μmol/(cm·h) | [ |
| TiO2-MoS2-CdS | 沉积法 | 模拟太阳光下328μmol/(h·g) | [ |
| [1] | 李洪言, 赵朔, 林傲丹, 等. 2019年全球能源供需分析——基于《BP世界能源统计年鉴(2020)》[J]. 天然气与石油, 2020, 38(6): 122-130. |
| LI Hongyan, ZHAO Shuo, LIN Aodan, et al. Analysis on world energy supply & demand in 2019——Based on BP statistical review of world energy (2020)[J]. Natural Gas and Oil, 2020, 38(6): 122-130. | |
| [2] | BALAT M. Status of fossil energy resources: A global perspective[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2007, 2(1): 31-47. |
| [3] | MALEKI Hajar, Nicola HÜSING. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects[J]. Applied Catalysis B: Environmental, 2018, 221: 530-555. |
| [4] | 余周, 胡志伟, 吴佳, 等. 我国水污染现状、危害及处理措施研究[J]. 环境与发展, 2019, 31(6): 61, 63. |
| YU Zhou, HU Zhiwei, WU Jia, et al. Briefly describe the status quo, harm and treatment measures of water pollution in China[J]. Environment and Development, 2019, 31(6): 61, 63. | |
| [5] | MATTHEWS R W. Photocatalytic oxidation of organic contaminants in water: An aid to environmental preservation[J]. Pure and Applied Chemistry, 1992, 64(9): 1285-1290. |
| [6] | GUO Jiaqi, FAN Yuping, QIAO Chenyu, et al. Harnessing coal and coal waste for environmental conservation: A review of photocatalytic materials[J]. Science of The Total Environment, 2024, 946: 174437. |
| [7] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [8] | FRANK Steven N, BARD Allen J. Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1977, 99(14): 4667-4675. |
| [9] | AIJO JOHN K, NADUVATH Johns, REMILLARD Stephen K, et al. A simple method to fabricate metal doped TiO2 nanotubes[J]. Chemical Physics, 2019, 523: 198-204. |
| [10] | SAIEN J, NEJATI H. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions[J]. Journal of Hazardous Materials, 2007, 148(1/2): 491-495. |
| [11] | WANG Huqun, YAN Junping, CHANG Wenfu, et al. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2 [J]. Catalysis Communications, 2009, 10(6): 989-994. |
| [12] | Wan-Kuen JO, PARK Kun-Ho. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application[J]. Chemosphere, 2004, 57(7): 555-565. |
| [13] | ZHANG Lihong, LI Peijun, GONG Zongqiang, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light[J]. Journal of Hazardous Materials, 2008, 158(2/3): 478-484. |
| [14] | GUILLARD Chantal, DISDIER Jean, MONNET Christine, et al. Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications[J]. Applied Catalysis B: Environmental, 2003, 46(2): 319-332. |
| [15] | JIN Fan, WEI Min, CHEN Tingwei, et al. Behavior of photogenerated electron-hole pair for water splitting on TiO2(110)[J]. The Journal of Physical Chemistry C, 2018, 122(40): 22930-22938. |
| [16] | Gomathi DEVI L, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity[J]. Applied Catalysis B: Environmental, 2013, 140/141: 559-587. |
| [17] | SHANGGUAN Wenfeng, KUDO Akihiko, JIANG Zhi, et al. Photocatalysis: From solar light to hydrogen energy[J]. Frontiers in Energy, 2021, 15(3): 565-567. |
| [18] | 乔鹏, 代曼, 刘颖, 等. 不同结构TiO2纳米材料的制备及在光解水制氢方向的研究进展[J]. 现代化工, 2022, 42(9): 36-39, 45. |
| QIAO Peng, DAI Man, LIU Ying, et al. Preparation of TiO2 nanomaterials with different structures and research progress on their application in photolysis of water for hydrogen production[J]. Modern Chemical Industry, 2022, 42(9): 36-39, 45. | |
| [19] | CHE Lin, PAN Jialu, CAI Kexin, et al. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review[J]. Separation and Purification Technology, 2023, 315: 123708. |
| [20] | CHENG Hsyi-En, HUNG Chi-Hsiu, YU Ing-Song, et al. Strongly enhancing photocatalytic activity of TiO2 thin films by multi-heterojunction technique[J]. Catalysts, 2018, 8(10): 440. |
| [21] | LAI Yen-Ju, LEE Duu-Jong. Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: A review[J]. Chemosphere, 2021, 282: 131059. |
| [22] | WANG Huanli, ZHANG Lisha, CHEN Zhigang, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244. |
| [23] | WANG Qian, DOMEN Kazunari. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies[J]. Chemical Reviews, 2020, 120(2): 919-985. |
| [24] | BANERJEE Swagata, DIONYSIOU Dionysios D, PILLAI Suresh C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 176/177: 396-428. |
| [25] | ETACHERI Vinodkumar, DI VALENTIN Cristiana, SCHNEIDER Jenny, et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25: 1-29. |
| [26] | AL-NUAIM Marwah A, ALWASITI Asawer A, SHNAIN Zainab Y. The photocatalytic process in the treatment of polluted water[J]. Chemical Papers, 2023, 77(2): 677-701. |
| [27] | SHARMA K, VAYA D, PRASAD G, et al. Photocatalytic process for oily wastewater treatment: A review[J]. International Journal of Environmental Science and Technology, 2023, 20(4): 4615-4634. |
| [28] | ZHANG Xianlong, YUAN Long, LIANG Fengbing, et al. Water-assisted synthesis of shape-specific BiOCl nanoflowers with enhanced adsorption and photosensitized degradation of rhodamine B[J]. Environmental Chemistry Letters, 2020, 18(1): 243-249. |
| [29] | XU Quanlong, ZHANG Liuyang, CHENG Bei, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
| [30] | LUO Xiao, KE Yiming, YU Liang, et al. Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evolution[J]. Applied Surface Science, 2020, 515: 145970. |
| [31] | NASIR Jamal Abdul, MUNIR Akhtar, AHMAD Naveed, et al. Photocatalytic Z-scheme overall water splitting: Recent advances in theory and experiments[J]. Advanced Materials, 2021, 33(52): e2105195. |
| [32] | MARSCHALL Roland. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Advanced Functional Materials, 2014, 24(17): 2421-2440. |
| [33] | Jingxiang LOW, YU Jiaguo, JARONIEC Mietek, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
| [34] | KUANG Xinya, DENG Xiyu, MA Yiwen, et al. Type Ⅱ heterojunction promotes photoinduced effects of TiO2 for enhancing photocatalytic performance[J]. Journal of Materials Chemistry C, 2022, 10(16): 6341-6347. |
| [35] | CAO Lidong, MA Dukang, ZHOU Zhaolu, et al. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation[J]. Chemical Engineering Journal, 2019, 368: 212-222. |
| [36] | LI Xiaoxiao, FENG Xinya, MENG Delong, et al. Fabrication of TiO2/MOF type Ⅱ heterojunction by growth of TiO2 on Cr-based MOF for enhanced photocatalytic hydrogen production[J]. Crystal Growth & Design, 2025, 25(4): 1182-1189. |
| [37] | NAGAKAWA Haruki, NAGATA Morio. Elucidating the factors affecting hydrogen production activity using a CdS/TiO2 type-Ⅱ composite photocatalyst[J]. ACS Omega, 2021, 6(6): 4395-4400. |
| [38] | KUMAR Ajay, NAYAK Dipali, SAHOO Pooja, et al. Synthesis of type-Ⅱ TiO2 nanoparticle/ZnO nanorods heterostructure for enhanced photocatalytic activity[J]. Materials Letters, 2024, 367: 136672. |
| [39] | ZHOU Xiao, WU Jiang, LI Qifen, et al. Carbon decorated In2O3/TiO2 heterostructures with enhanced visible-light-driven photocatalytic activity[J]. Journal of Catalysis, 2017, 355: 26-39. |
| [40] | LIN Yimin, FANG Wanqing, Rongzi XV, et al. TiO2 nanoparticles modified with ZnIn2S4 nanosheets and Co-Pi groups: Type Ⅱ heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(78): 33361-33373. |
| [41] | PENG Ke, YU Shuohan, LUO Yongping, et al. Enhancement TiO2 photocatalytic hydrogen production via using ABO3 to construct heterojunction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132822. |
| [42] | LIN Biyun, LI Shanshan, PENG Yannan, et al. MOF-derived core/shell C-TiO2/CoTiO3 type Ⅱ heterojunction for efficient photocatalytic removal of antibiotics[J]. Journal of Hazardous Materials, 2021, 406: 124675. |
| [43] | LIN Jianfei, LIU Yong, LIU Yongping, et al. SnS2 nanosheets/H-TiO2 nanotube arrays as a type Ⅱ heterojunctioned photoanode for photoelectrochemical water splitting[J]. ChemSusChem, 2019, 12(5): 961-967. |
| [44] | SILVA Ricardo Marques E, DE LOURDES SOUZA Fernanda, DIAS Eduardo, et al. The role of TiO2: SnO2 heterojunction for partial oxidation of methane by photoelectrocatalytic process at room temperature[J]. Journal of Alloys and Compounds, 2023, 968: 172090. |
| [45] | ZHANG Huabing, HUO Mingxia, JIA Ruodan, et al. Construction of MoS2/TiO2 heterojunction for excellent photocatalytic degradation of tetracycline[J]. ChemistrySelect, 2023, 8(46): e202303766. |
| [46] | ZHANG Cuiqing, MA Yaya, LI Chengyu, et al. Spatially confined growth of Bi2O4 into hierarchical TiO2 spheres for improved visible light photocatalytic activity[J]. Journal of Materials Science, 2020, 55(8): 3181-3194. |
| [47] | XU Minghua, RUAN Xiaowen, SHAHID Malik Zeeshan, et al. Alkali induction strategy for artificial photosynthesis of hydrogen by TiO2 heterophase homojunctions[J]. Advanced Science, 2025, 12(12): e2413069. |
| [48] | PEARSON G L, MONTGOMERY H C, FELDMANN W L. Noise in silicon p-n junction photocells[J]. Journal of Applied Physics, 1956, 27(1): 91-92. |
| [49] | CHEN Shifu, ZHAO Wei, LIU Wei, et al. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2 [J]. Applied Surface Science, 2008, 255(5): 2478-2484. |
| [50] | PANG Zengyuan, YANG Zhanping, CHEN Yun, et al. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494: 248-255. |
| [51] | LUO Yaning, LI Yan, QIAN Longlong, et al. Excellent photocatalytic performance from NiS decorated TiO2 nanoflowers with exposed{001}facets[J]. Materials Research Bulletin, 2020, 130: 110945. |
| [52] | WANG Shuo, LI Guangshe, ZHENG Jiayi, et al. Exceptional photochemical interface: Creation of a p-n junction and enhanced photoreduction ability[J]. ACS Applied Materials & Interfaces, 2024, 16(46): 64307-64316. |
| [53] | LIU Yutang, CAI Tao, WANG Longlu, et al. Hollow microsphere TiO2/ZnO p-n heterojuction with high photocatalytic performance for 2,4-dinitropheno mineralization[J]. Nano, 2017, 12(6): 1750076. |
| [54] | DENG Quanrong, SHI Liu, LU Kun, et al. Construction of Ca-CuFeO2/TiO2(B) p-n heterojunctions with efficient visible light-driven photocatalysis[J]. The Journal of Physical Chemistry C, 2023, 127(9): 4704-4713. |
| [55] | ZHOU Shuai, BAO Nan, ZHANG Qingzhe, et al. Engineering hierarchical porous oxygen-deficient TiO2 fibers decorated with BiOCl nanosheets for efficient photocatalysis[J]. Applied Surface Science, 2019, 471: 96-107. |
| [56] | BAO Sarenqiqige, LIANG Haiou, LI Chunping, et al. The synthesis and enhanced photocatalytic activity of heterostructure BiOCl/TiO2 nanofibers composite for tetracycline degradation in visible light[J]. Journal of Dispersion Science and Technology, 2021, 42(13): 2000-2013. |
| [57] | WANG Zihan, MA Xiaoqing, LI Qiaodan, et al. Fabrication of TiO2 nanorods/γ-graphyne boosting junction-driven charge transfer for efficient photoelectrochemical water splitting[J]. Vacuum, 2024, 220: 112872. |
| [58] | NGUYEN Van-Huy, MOUSAVI Mitra, GHASEMI Jahan B, et al. Novel p-n heterojunction nanocomposite: TiO2 QDs/ZnBi2O4 photocatalyst with considerably enhanced photocatalytic activity under visible-light irradiation[J]. The Journal of Physical Chemistry C, 2020, 124(50): 27519-27528. |
| [59] | WANG Qingyao, LIU Zhiyuan, FENG Hao, et al. Engineering Bi2S3/BiOI p-n heterojunction to sensitize TiO2 nanotube arrays photoelectrodes for highly efficient solar cells and photocatalysts[J]. Ceramics International, 2019, 45(3): 3995-4002. |
| [60] | YU Zhuo, XIAO Ming, LIU Hanyu, et al. FeOOH modified carbon doped TiO2 p-n heterojunction wrapped Fe3O4 for highly efficient removal of As(Ⅲ) through photocatalytic oxidation and adsorption[J]. Journal of Water Process Engineering, 2024, 61: 105314. |
| [61] | KE Shuwen, NAGHIZADEH Matin, SUN Longhui, et al. Highly reactive ZnFe2O4/TiO2 p-n heterojunction photocatalyst accelerates interfacial charge transfer for boosted photodegradation of ammonia nitrogen[J]. Chemical Engineering Science, 2025, 307: 121361. |
| [62] | ZHAO Yun, FENG Kai, HE Weiwei, et al. Enhanced tribological and antimicrobial performance by sputtered heterojunction of ZnO-TiO2 multilayer thin film[J]. Surfaces and Interfaces, 2025, 58: 105835. |
| [63] | JIANG Xiaodong, XU Changhai, DU Jinmei, et al. PVDF-based nanofiber membrane decorated with Z-scheme TiO2/MIL-100(Fe) heterojunction for efficient oil/water emulsion separation and dye photocatalytic degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 688: 133605. |
| [64] | TANG Qiangyong, LUO Xiuli, YANG Siyuan, et al. Novel Z-scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation[J]. Separation and Purification Technology, 2020, 248: 117039. |
| [65] | BARD Allen J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry, 1979, 10(1): 59-75. |
| [66] | TADA Hiroaki, MITSUI Tomohiro, KIYONAGA Tomokazu, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786. |
| [67] | WANG Xuewen, LIU Gang, CHEN Zhigang, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chemical Communications, 2009(23): 3452-3454. |
| [68] | YU Jiaguo, WANG Shuhan, Jingxiang LOW, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16883-16890. |
| [69] | WANG Fengliang, WU Yuliang, WANG Yingfei, et al. Construction of novel Z-scheme nitrogen-doped carbon dots/{0 0 1}TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: Mechanism insight, products and effects of natural water matrices[J]. Chemical Engineering Journal, 2019, 356: 857-868. |
| [70] | SARI Fitri Nur Indah, YEN Duong Thi Kim, TING Jyh-Ming. Enhanced photocatalytic performance of TiO2 through a novel direct dual Z-scheme design[J]. Applied Surface Science, 2020, 533: 147506. |
| [71] | WANG Lulu, LI Han, ZHANG Sifeng, et al. One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method[J]. Solid State Sciences, 2020, 100: 106098. |
| [72] | HU Yisheng, ZHANG Xiaotian, ZHANG Xinyan, et al. In situ strategy to construct Z-scheme poly(diphenylbutadiene)/TiO2 heterojunctions with enhanced visible light photocatalytic performance[J]. Journal of Solid State Chemistry, 2022, 311: 123085. |
| [73] | BAO Erpeng, LONG Songtao, ZHANG Shuoqing, et al. A ternary photocatalyst with double heterojunctionsfor efficient diesel oil degradation[J]. ChemistrySelect, 2021, 6(13): 3117-3125. |
| [74] | ZHANG Mi, LU Meng, LANG Zhongling, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis[J]. Angewandte Chemie International Edition, 2020, 59(16): 6500-6506. |
| [75] | THANH TUNG Mai Hung, DIEU CAM Nguyen Thi, VAN THUAN Doan, et al. Novel direct Z-scheme AgI/N-TiO2 photocatalyst for removal of polluted tetracycline under visible irradiation[J]. Ceramics International, 2020, 46(5): 6012-6021. |
| [76] | SUN Zhiguo, WANG Menglu, FAN Jiaming, et al. TiO2@MIL-101(Cr) nanocomposites as an efficient photocatalyst for degradation of toluene[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1322-1329. |
| [77] | HASHEM El-Hussein, FAHMY Ahmed, ABBAS Ahmed, et al. Fabrication of novel AgIO4/TiO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism[J]. Nanotechnology for Environmental Engineering, 2020, 5(2): 17. |
| [78] | Natalija MILOJKOVIĆ, Bojana SIMOVIĆ, Milan ŽUNIĆ, et al. Modified Z-scheme heterojunction of TiO2/polypyrrole recyclable photocatalyst[J]. Journal of the American Ceramic Society, 2025, 108(6): e20431. |
| [79] | LI Fangyi, ZHU Guihua, JIANG Jizhou, et al. A review of updated S-scheme heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2024, 177: 142-180. |
| [80] | REN Doudou, ZHANG Weinan, DING Yingna, et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution[J]. Solar RRL, 2020, 4(8): 1900423. |
| [81] | 胥生元, 郝玮, 王杰, 等. 半导体光催化剂BiOCl异质结的构建及应用[J]. 化工进展, 2023, 42(3): 1493-1507. |
| XU Shengyuan, HAO Wei, WANG Jie, et al. Construction and application of BiOCl heterojunction as semiconductor photocatalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1493-1507. | |
| [82] | DAI Xiaojun, FENG Sheng, WU Wei, et al. Photocatalytic hydrogen evolution and antibiotic degradation by S-scheme ZnCo2S4/TiO2 [J]. International Journal of Hydrogen Energy, 2022, 47(60): 25104-25116. |
| [83] | ZHANG Xiaotian, JIN Zipeng, LI Kunting, et al. Multifunctional conductive MOFs enhance the photocatalytic hydrogen evolution efficiency of S-type Ni3(HITP)2/TiO2 heterojunctions[J]. Langmuir, 2024, 40(45): 23729-23738. |
| [84] | YANG Yi, CHENG Bei, YU Jiaguo, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity[J]. Nano Research, 2023, 16(4): 4506-4514. |
| [85] | ZHAO Xin, WANG Simiao, SHAN Diyang, et al. Formation of conjugated polymer/TiO2(B) S-scheme heterojunctions by functional group regulation for efficient natural light-driven inactivation of super-resistant bacteria[J]. Chemical Engineering Journal, 2024, 495: 153675. |
| [86] | ZHU Chengzhang, YAO Haiqian, LE Shukun, et al. S-scheme photocatalysis induced by ultrathin TiO2(B) nanosheets-anchored hierarchical In2S3 spheres for boosted photocatalytic activity[J]. Composites Part B: Engineering, 2022, 242: 110082. |
| [87] | WANG Liping, KANG Yiyi, ZHANG Mingyuan, et al. Construction of a S-scheme oxygen-deficient CeO2/TiO2 heterojunction for efficient charges separation: Interfacial electronic behavior and mechanism insight[J]. Journal of Alloys and Compounds, 2025, 1010: 177418. |
| [88] | CHENG Kehao, HUA Jiahui, ZHANG Jinfeng, et al. Fluorinated-TiO2/Mn0.2Cd0.8S S-scheme heterojunction with rich sulfur vacancies for photocatalytic hydrogen production[J]. ACS Applied Nano Materials, 2024, 7(7): 7978-7988. |
| [89] | GAN Wei, FU Xucheng, GUO Jun, et al. C3N5/TiO2 S-scheme heterojunction film for efficient photocatalytic removal of gatifloxacin[J]. Journal of Alloys and Compounds, 2024, 1000: 175155. |
| [90] | YUE Feng, SHI Mengke, LI Cong, et al. S-scheme heterojunction Cu-porphyrin/TiO2 nanosheets with highly efficient photocatalytic reduction of CO2 in ambient air[J]. Journal of Colloid and Interface Science, 2024, 665: 1079-1090. |
| [91] | WANG Chunxue, CUI Donghui, YANG Xue, et al. H3PMo12O40@ZIF-67-derived CoMoC/ZnIn2S4 Schottky heterojunction for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2024, 77: 666-676. |
| [92] | 何建印, 陈柳云, 谢新玲, 等. ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢[J]. 物理化学学报, 2024, 40(11): 41-42. |
| HE Jianyin, CHEN Liuyun, XIE Xinling, et al. Construction of ZnCoP/CdLa2S4 Schottky heterojunctions for enhancing photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica, 2024, 40(11): 41-42. | |
| [93] | ZHAI Siyu, YANG Xiaoman, TANG Maoyuan, et al. Facile synthesis of Cu quantum dots-TiO2 nanosheets Schottky junction and improved photocatalytic degradation activity[J]. ChemistrySelect, 2020, 5(19): 5693-5700. |
| [94] | REN Xiaochen, GAO Peng, KONG Xianglong, et al. NiO/Ni/TiO2 nanocables with Schottky/p-n heterojunctions and the improved photocatalytic performance in water splitting under visible light[J]. Journal of Colloid and Interface Science, 2018, 530: 1-8. |
| [95] | ANDERSSON Martin, Lars ÖSTERLUND, Sten LJUNGSTRÖM, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol[J]. The Journal of Physical Chemistry B, 2002, 106(41): 10674-10679. |
| [96] | M Maria Angelin SINTHIYA, KUMARESAN N, RAMAMURTHI K, et al. Influence of heat treatment on the properties of hydrothermally grown 3D/1D TiO2 hierarchical hybrid microarchitectures over TiO2 seeded FTO substrates[J]. Applied Surface Science, 2018, 449: 122-131. |
| [97] | LUO Wenpo, TALEB Abdelhafed. Large-scale synthesis route of TiO2 nanomaterials with controlled morphologies using hydrothermal method and TiO2 aggregates as precursor[J]. Nanomaterials, 2021, 11(2): 365. |
| [98] | HE Yugan, YAN Qi, LIU Xuefei, et al. Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant{001}facets[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 393: 112400. |
| [99] | WIRANWETCHAYAN Orawan, PROMNOPAT Surin, THONGTEM Titipun, et al. Effect of polymeric precursors on the properties of TiO2 films prepared by sol-gel method[J]. Materials Chemistry and Physics, 2020, 240: 122219. |
| [100] | WANG Jing, LI Xiaotong, REN Yuanwen, et al. The effects of additive on properties of Fe doped TiO2 nanoparticles by modified sol-gel method[J]. Journal of Alloys and Compounds, 2021, 858: 157726. |
| [101] | MIQUELOT A, YOUSSEF L, VILLENEUVE-FAURE C, et al. In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films[J]. Journal of Materials Science, 2021, 56(17): 10458-10476. |
| [102] | WANG Xueqin, DAI Man, CHEN Qihui, et al. Enhanced photoelectrochemical performance of Co/TiO2 nanotubes prepared by electrodeposition[J]. Nano, 2022, 17(13): 2250101. |
| [103] | VEZIROGLU Salih, OBERMANN Anna-Lena, ULLRICH Marie, et al. Photodeposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14983-14992. |
| [104] | ZHAO Wan, YANG Xiuru, LIU Chunxi, et al. Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant[J]. Nanomaterials, 2020, 10(4): 600. |
| [105] | YADAV Smita M, DESAI Mangesh A, SARTALE Shrikrishna D. Superoxide (·O2-) radical speciesdriven type Ⅱ TiO2/g-C3N4 heterojunction photocatalyst for RhB dye degradation[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(22): 1651. |
| [106] | HUONG Nguyen Thi Mai, THUY Nguyen Thi, HOAI Pham Thi Thu, et al. Effective removal of carbofuran pesticide in wastewater using silver-doped TiO2 photocatalyst[J]. Journal of Environmental Science and Health, Part B, 2025, 60(3): 111-120. |
| [107] | YI Ming, SHANG Jiangwei, LIU Yunqing, et al. In-situ self-assembly of Z-scheme TiO2/g-C3N4 heterojunction enhanced visible-light photocatalytic performance for degrading phenolic pollutants[J]. Separation and Purification Technology, 2025, 360: 130977. |
| [108] | ZOU Sujing, LU Xu, MAO Xiqiang, et al. A novel dual Z-scheme heterojunction: Tungsten trioxide nanorods modified with potassium ions loaded with titanium dioxide and bismuth oxybromide for enhanced photocatalytic toluene degradation[J]. New Journal of Chemistry, 2025, 49(22): 9243-9255. |
| [109] | YANG Guang, CHEN Daimei, DING Hao, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency[J]. Applied Catalysis B: Environmental, 2017, 219: 611-618. |
| [110] | NGUYEN Phuong Hoang, PHAM Minh-Thuan, NGUYEN Hien Quoc, et al. Boosting visible-light-driven photocatalysis of nitrogen oxide degradation by Mott-Schottky Pd/TiO2 heterojunctions[J]. Separation and Purification Technology, 2025, 354: 129012. |
| [111] | ZHENG Yafei, LING Sichun, Yujing LYU, et al. Enhanced adsorption mediates efficient CO2 reduction over a Ru/TiO2- x Schottky heterojunction[J]. Energy & Fuels, 2024, 38(19): 18909-18917. |
| [112] | TONG Xinyu, CHEN Wei, CHENG Gang. Oxygen vacancy-enrich Ag/brookite TiO2 Schottky junction for enhanced photocatalytic CO2 reduction[J]. Molecular Catalysis, 2024, 560: 114140. |
| [113] | YANG Yong, KUANG Jianlei, CAO Wenbin. In situ hydrothermal synthesis of Schottky compound Ti2CT x /TiO2 for efficient photocatalytic oxidation NO x removal[J]. The Journal of Physical Chemistry C, 2025, 129(3): 1702-1713. |
| [114] | BHOM Fahima, Yusuf Makarfi ISA. Photocatalytic hydrogen production using TiO2-based catalysts: A review[J]. Global Challenges, 2024, 8(11): 2400134. |
| [115] | IMPEMBA Salvatore, PROVINCIALI Giacomo, FILIPPI Jonathan, et al. Engineering the heterojunction between TiO2 and In2O3 for improving the solar-driven hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 63: 896-904. |
| [116] | ZHOU Xiaosong, LIANG Jiabao, XU Limei, et al. Weakness-complementing Z-scheme black phosphorus/TiO2 heterojunction with efficient charge separation and photocatalytic overall water splitting activity[J]. Journal of Colloid and Interface Science, 2025, 689: 137240. |
| [117] | WEI G, NIU F, WANG Z, et al. Enhanced photocatalytic H2 evolution based on a polymer/TiO2 film heterojunction[J]. Materials Today Chemistry, 2022, 26: 101075. |
| [118] | HATTAB Ahmed EL, MIRZAEI Amir, NADA Amr A, et al. TiO2/BiVO4 dual photoanodes: Extending light harvesting and addressing band edge misalignment for photoelectrochemical water splitting[J]. Journal of Power Sources, 2025, 643: 237070. |
| [119] | LIN Kuo, LIU Qi, YUE Xianyun, et al. Rutile TiO2-MoS2-CdS ternary heterojunctions with enhanced charge transfer for photocatalytic pure water splitting[J]. International Journal of Hydrogen Energy, 2025, 126: 251-260. |
| [120] | ZHANG Haifeng, YANG Xuzhuang, GAO Guanjun, et al. Green hydrogen production by photocatalytic direct dehydrogenation of methanol on CuPt/TiO2 [J]. Fuel, 2024, 366: 131391. |
| [121] | HISATOMI Takashi, DOMEN Kazunari. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts[J]. Nature Catalysis, 2019, 2(5): 387-399. |
| [122] | MAEDA Kazuhiko, DOMEN Kazunari. Photocatalytic water splitting: Recent progress and future challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661. |
| [123] | LI Huafang, HAO Jiaqi, LIU Xiwei. Research progress and perspective of metallic implant biomaterials for craniomaxillofacial surgeries[J]. Biomaterials Science, 2024, 12(2): 252-269. |
| [124] | LONG Marc, RACK H J. Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998, 19(18): 1621-1639. |
| [125] | LIU Yue, ZENG Xiangkang, HU Xiaoyi, et al. Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection[J]. Catalysis Today, 2019, 335: 243-251. |
| [126] | GNANASEKARAN Lalitha, PACHAIAPPAN Rekha, Senthil KUMAR P, et al. Visible light driven exotic p(CuO)-n(TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity[J]. Environmental Pollution, 2021, 287: 117304. |
| [127] | WANG Kai, YU Xiaojiao, YANG Fan, et al. Construction of a Z-scheme Cu2O/SrBi4Ti4O15 p-n heterojunction for enhanced visible light photocatalytic performance for doxycycline degradation[J]. Advanced Powder Technology, 2023, 34(10): 104157. |
| [128] | SHAH Navid Hussain, ABBAS Muhammad, QASIM Muhammad, et al. Tuning the catalytic performance of CaSnO3 by developing an S-scheme p-n heterojunction through Ag6Si2O7 doping[J]. Catalysis Science & Technology, 2023, 13(22): 6490-6504. |
| [1] | 王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362. |
| [2] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [3] | 卢永琦, 肖嘉宁, 迭庆杞, 徐思琪, 黄瑞潇, 孔祥蕊, 杨玉飞. 堆存粉煤灰长期淋溶过程污染物释放特征与环境风险评估[J]. 化工进展, 2025, 44(9): 5479-5490. |
| [4] | 李聃, 孔垂龙, 胡博, 王圣燕, 刘冬艳, 刘力华. 磷光碳纳米粉的制备及其在潜手印无荧光干扰显现中的应用[J]. 化工进展, 2025, 44(7): 4013-4021. |
| [5] | 叶晓生, 袁婷, 贾鑫, 任庆霞. 多元复合纳米材料去除微囊藻毒素-LR研究进展[J]. 化工进展, 2025, 44(7): 4144-4157. |
| [6] | 马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 不同方法对煤气化粗渣中硅铝矿物的活化[J]. 化工进展, 2025, 44(7): 4251-4266. |
| [7] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [8] | 周美梅, 何家慧, 向婉婷, 尚佳欣, 魏心语, 孙蜜蜜, 邹伟, 罗平平. 电纺PVA/SiO2纳米纤维负载A-TiO2/BiOBr增强可见光催化活性[J]. 化工进展, 2025, 44(6): 3084-3092. |
| [9] | 付江, 孙姣霞, 付俊杰, 朱敏, 宋品学, 周怡宁, 樊建新. 疏水改性聚酯纤维织物的自清洁作用及油水分离性能[J]. 化工进展, 2025, 44(6): 3121-3131. |
| [10] | 孔灿, 刘雨函, 盛誉, 刘芳, 常化振. 聚苯胺增强氧化亚铜催化二氧化碳还原[J]. 化工进展, 2025, 44(6): 3144-3153. |
| [11] | 张磊, 张新儒, 王永洪, 李晋平, 刘春波. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J]. 化工进展, 2025, 44(6): 3324-3335. |
| [12] | 成韵, 周小力, 曹志强, 周杰, 董维亮, 姜岷. 基于LCA的废弃PET酶法解聚和碱性水解过程环境影响对比分析[J]. 化工进展, 2025, 44(5): 2788-2797. |
| [13] | 戴月明, 周梅芳, 沈建华, 姜海波, 李春忠. TiO2纳米颗粒烧结机制分子动力学模拟[J]. 化工进展, 2025, 44(4): 2202-2214. |
| [14] | 牛经纬, 陈孝杨, 张健, 周育智, 陈敏. 活化过硫酸盐降解土壤典型环境内分泌干扰物[J]. 化工进展, 2025, 44(4): 2285-2296. |
| [15] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |