化工进展 ›› 2025, Vol. 44 ›› Issue (10): 6073-6082.DOI: 10.16085/j.issn.1000-6613.2024-1446
• 资源与环境化工 • 上一篇
收稿日期:2024-09-04
修回日期:2025-01-28
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
黄志甲
作者简介:张样(1982—),女,博士研究生,研究方向为CO2捕集。E-mail:jzjnyjs@163.com。
基金资助:
ZHANG Yang1,2(
), HUANG Zhijia2(
), XIE Fusong2, LU Yuehong2
Received:2024-09-04
Revised:2025-01-28
Online:2025-10-25
Published:2025-11-10
Contact:
HUANG Zhijia
摘要:
针对传统醇胺水溶剂在吸收和解吸CO2过程中出现的能耗高和腐蚀性强的问题,本文以乙醇胺(MEA)为主体吸收剂,二乙烯三胺甲酸盐([DETAH][HCOO])为活化剂,二甲亚砜(DMSO)为溶剂制备二乙烯三胺甲酸盐复配无水吸收剂([DETAH][HCOO]-MEA-DMSO),并系统研究吸附剂的吸附性能、解吸性能及耐腐蚀性能。研究表明,在温度20℃、[DETAH][HCOO]与MEA的质量比为1∶1、[DETAH][HCOO]与MEA的总质量分数为20%、气液比为2∶1的条件下,无水吸收剂中部分氨基(—NH2)与CO2反应生成氨基甲酸,吸收CO2后并未产生HCO3-/CO32-,腐蚀性极低。无水吸收剂与水体系混合吸收剂相比,CO2吸收容量提高了14.67%,CO2最大吸收速率提高了1.24%,解吸负荷提高了35.61%,同时解吸能耗降低了54.41%。该研究为新型CO2吸收剂的开发提供了新的思路,助力我国“双碳”战略的稳步实施。
中图分类号:
张样, 黄志甲, 谢福松, 鲁月红. 基于二乙烯三胺甲酸盐-乙醇胺-二甲亚砜无水CO2吸收剂的制备及性能[J]. 化工进展, 2025, 44(10): 6073-6082.
ZHANG Yang, HUANG Zhijia, XIE Fusong, LU Yuehong. Preparation and properties investigation of CO2 anhydrous absorbent based on diethylenetriamine-ethanolamine-dimethyl sulfoxide[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6073-6082.
| 有机溶剂 | 反应前 | 反应后 |
|---|---|---|
| [DETAH][HCOO]-MEA-苯甲醇 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N-甲基吡咯烷酮 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇甲醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇二丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-二甲亚砜 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N,N-二甲基甲酰胺 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-三甘醇单乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-聚乙二醇200 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-二乙二醇丁醚 | 均相 | 液-固分层 |
表1 混合吸收剂吸收CO2前后的相态对比
| 有机溶剂 | 反应前 | 反应后 |
|---|---|---|
| [DETAH][HCOO]-MEA-苯甲醇 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N-甲基吡咯烷酮 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇甲醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇二丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-二甲亚砜 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N,N-二甲基甲酰胺 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-三甘醇单乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-聚乙二醇200 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-二乙二醇丁醚 | 均相 | 液-固分层 |
表2 无水吸收剂的指标对比
| [1] | 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663. |
| ZHOU Tianjun, CHEN Ziming, CHEN Xiaolong, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663. | |
| [2] | 周天军, 陈晓龙. 《巴黎协定》温控目标下未来碳排放空间的准确估算问题辨析[J]. 中国科学院院刊, 2022, 37(2): 216-229. |
| ZHOU Tianjun, CHEN Xiaolong. Perspective on challenges in accurately estimating remaining carbon budget for climate targets of paris agreement[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(2): 216-229. | |
| [3] | 孙凤, 黄志甲, 张样, 等. 高炉煤气碳捕集对钢铁联合企业碳排放的影响[J]. 节能技术, 2022, 40(3): 244-247. |
| SUN Feng, HUANG Zhijia, ZHANG Yang, et al. Effect of CO2 capture of blast furnace gas on carbon emission of integrated steel works[J]. Energy Conservation Technology, 2022, 40(3): 244-247. | |
| [4] | 孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
| KONG Xiangyu, XIE Liang, WANG Yanmin, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. | |
| [5] | 何婷, 林文胜. 基于余热利用的活化MDEA法脱除CO2的天然气液化系统[J]. 化工学报, 2021, 72(S1): 453-460. |
| HE Ting, LIN Wensheng. Natural gas liquefaction system with activated MDEA method for CO2 removal based on waste heat utilization[J]. CIESC Journal, 2021, 72(S1): 453-460. | |
| [6] | AWAD Abdelrahman, ALJUNDI Isam H. Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas[J]. Energy, 2018, 157: 188-199. |
| [7] | 王新东, 上官方钦, 邢奕, 等. “双碳” 目标下钢铁企业低碳发展的技术路径[J]. 工程科学学报, 2023, 45(5): 853-862. |
| WANG Xindong, SHANGGUAN Fangqin, XING Yi, et al. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target[J]. Chinese Journal of Engineering, 2023, 45(5): 853-862. | |
| [8] | 张金星, 张样, 黄志甲, 等. 基于响应曲面法的高炉煤气CO2吸收工艺参数优化[J]. 过程工程学报, 2021, 21(8): 985-992. |
| ZHANG Jinxing, ZHANG Yang, HUANG Zhijia, et al. Optimization of CO2 absorption process parameters of blast furnace gas based on response surface methodology[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 985-992. | |
| [9] | FANG Mengxiang, YI Ningtong, DI Wentao, et al. Emission and control of flue gas pollutants in CO2 chemical absorption system—A review[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102904. |
| [10] | GAUTAM Ashish, MONDAL Monoj Kumar. Review of recent trends and various techniques for CO2 capture: Special emphasis on biphasic amine solvents[J]. Fuel, 2023, 334: 126616. |
| [11] | 张金星, 黄志甲, 张样, 等. 醇胺法捕集高炉煤气CO2工艺吸收剂的优选[J]. 安徽工业大学学报(自然科学版), 2021, 38(2): 169-174. |
| ZHANG Jinxing, HUANG Zhijia, ZHANG Yang, et al. Optimization of absorbent for CO2 capture from blast furnace gas by alcohol amine process[J]. Journal of Anhui University of Technology (Natural Science), 2021, 38(2): 169-174. | |
| [12] | 屈丹龙, 陆诗建, 林名桢, 等. 新型烟气CO2捕集吸收剂测试分析与优化[J]. 天然气化工(C1化学与化工), 2020, 45(2): 95-99. |
| QU Danlong, LU Shijian, LIN Mingzhen, et al. Test analysis and optimization of a new type of flue gas CO2 capture absorbent[J]. Natural Gas Chemical Industry, 2020, 45(2): 95-99. | |
| [13] | ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
| [14] | 郭雨桐, 包海艺, 袁佳敏, 等. 离子液体[TETAH]+[BF4]-——乙二醇混合体系吸收CO2的实验研究[J]. 环境科学学报, 2020, 40(2): 492-496. |
| GUO Yutong, BAO Haiyi, YUAN Jiamin, et al. Experimental study on CO2 absorption by ionic liquid [TETAH]+[BF4]-—ethylene glycol mixed solvent[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 492-496. | |
| [15] | 陶梦娜. 非水溶剂/多元胺体系的CO2液固相变吸收基础研究[D]. 杭州: 浙江大学, 2018. |
| TAO Mengna. The basic study of CO2 liquid-solid phase change absorption with non-aqueous solvent/polyamine system[D]. Hangzhou: Zhejiang University, 2018. | |
| [16] | YU Y S, LU H F, ZHANG T T, et al. Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K[J]. Industrial & Engineering Chemistry Research, 2013, 52(35): 12622-12634. |
| [17] | CIFTJA Arlinda F, HARTONO Ardi, SVENDSEN Hallvard F. Experimental study on phase change solvents in CO2 capture by NMR spectroscopy[J]. Chemical Engineering Science, 2013, 102: 378-386. |
| [18] | 刘练波, 方梦祥, 许世森, 等. DMAC/DETA复配水溶液两相吸收剂吸收CO2的行为研究[J]. 中国电机工程学报, 2021, 41(18): 6284-6292. |
| LIU Lianbo, FANG Mengxiang, XU Shisen, et al. Research on CO2 absorption behavior by DMAC/DETA biphasic absorbent[J]. Proceedings of the CSEE, 2021, 41(18): 6284-6292. | |
| [19] | 徐志成, 王淑娟, 陈昌和. BDA/DEEA两相吸收剂吸收CO2的研究[J]. 工程热物理学报, 2013, 34(5): 993-997. |
| XU Zhicheng, WANG Shujuan, CHEN Changhe. CO2 absorption by BDA/DEEA biphasic solvents[J]. Journal of Engineering Thermophysics, 2013, 34(5): 993-997. | |
| [20] | JIANG Wufeng, GAO Xiaoyi, XU Bin, et al. Effect of water on CO2 absorption by a novel anhydrous biphasic absorbent: Phase change behavior, absorption performance, reaction heat, and absorption mechanism[J]. Separation and Purification Technology, 2023, 325: 124624. |
| [21] | WU Hanlin, ZHANG Xuelai, WU Qing. Research progress of carbon capture technology based on alcohol amine solution[J]. Separation and Purification Technology, 2024, 333: 125715. |
| [22] | WANG Nan, PENG Zhengqi, GAO Hongxia, et al. New insight and evaluation of secondary Amine/N-butanol biphasic solutions for CO2 Capture: Equilibrium Solubility, phase separation Behavior, absorption Rate, desorption Rate, energy consumption and ion species[J]. Chemical Engineering Journal, 2022, 431: 133912. |
| [23] | 李磊, 赵宴民, 田海洋, 等. 燃气烟气中低浓度CO2的低能耗高效捕集工艺模拟优化[J]. 化工进展, 2024, 43(S1): 581-589. |
| LI Lei, ZHAO Yanmin, TIAN Haiyang, et al. Simulation and optimization of low energy consumption and high efficiency capture process for low concentration CO2 in flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 581-589 | |
| [24] | 王凤池, 刘飞, 赵瑞, 等. 基于DEEA/MEA两相吸收剂的15万t/年烟气CO2捕集工艺模拟和技术经济分析[J]. 中国电机工程学报, 2021, 41(23): 8088-8097. |
| WANG Fengchi, LIU Fei, ZHAO Rui, et al. Process simulation and techno-economic analysis on 150000t/year CO2 chemical absorption process from flue gas based on DEEA/MEA biphasic solvent[J]. Proceedings of the CSEE, 2021, 41(23): 8088-8097. | |
| [25] | 谢福松, 黄战, 黄志甲, 等. 高炉煤气碳捕集吸收塔设计[J]. 山东化工, 2021, 50(21): 157-158, 166. |
| XIE Fusong, HUANG Zhan, HUANG Zhijia, et al. Design of CO2 absorption tower for blast furnace gas[J]. Shandong Chemical Industry, 2021, 50(21): 157-158, 166. | |
| [26] | 黄志甲, 黄战, 张金星, 等. 氨法吸收高炉煤气中CO2过程传热传质模型[J]. 冶金能源, 2021, 40(5): 3-7. |
| HUANG Zhijia, HUANG Zhan, ZHANG Jinxing, et al. Heat and mass transfer model of CO2 absorption from blast furnace gas by ammonia process[J]. Energy for Metallurgical Industry, 2021, 40(5): 3-7. | |
| [27] | 李晨旭. 新型CO2捕集吸收体系构建及其再生过程的研究[D]. 石家庄: 河北科技大学, 2020. |
| LI Chenxu. Study on novel absorbent systems for CO2 capture and its regeneration characteristics[D]. Shijiazhuang: Hebei University of Science and Technology, 2020. | |
| [28] | 张样, 黄志甲, 鲁月红, 等. 一种吸收二氧化碳的氨基功能离子复配无水吸收剂及其制备方法:CN115738600A[P]. 2023-03-07. |
| ZHANG Yang, HUANG Zhijia, LU Yuehong, et al. Proposal for the preparation of an amino-functional ion-complexed anhydrous absorbent for carbon dioxide absorption: CN115738600A.1[P]. 2023-03-07. | |
| [29] | 张宁. 二氧化碳在有机胺中吸收及解吸动力学研究[D]. 上海: 华东理工大学, 2011. |
| ZHANG Ning. Kinetics of the reactive absorption and desorption of CO2 in organie amines[D]. Shanghai: East China University of Science and Technology, 2011. | |
| [30] | 郭超, 陈绍云, 陈思铭, 等. 13C-NMR定量分析一乙醇胺(MEA)与CO2的吸收和解吸特性[J]. 化工进展, 2014, 33(11): 3101-3106. |
| GUO Chao, CHEN Shaoyun, CHEN Siming, et al. Quantitative analysis on CO2 absorption and desorption in monoethanolamine(MEA) solution by using 13C-NMR[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3101-3106. | |
| [31] | 姚靖, 梁怀勇, 潘艳艳, 等. 乙醇胺-二甲基亚砜无水溶液吸收-解吸二氧化碳性能[J]. 节能与环保, 2021, 12(3): 64-66. |
| YAO Jing, LIANG Huaiyong, PAN Yanyan, et al. CO2 absorption and desorption performance of monoethanolamine-dimethyl sulfoxide nonaqueous solution[J]. Energy Conservation & Environmental Protection, 2021, 12(3): 64-66. | |
| [32] | MENG Fanli, FU Kun, WANG Xueli, et al. Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas[J]. Energy, 2024, 286: 129631. |
| [33] | 顾永正, 李晓辉, 高歌, 等. 高效低能耗氨基酸盐水溶液固-液相变吸收剂捕集CO2性能探究[J]. 低碳化学与化工, 2025, 50(4): 122-130. |
| GU Yongzheng, LI Xiaohui, GAO Ge, et al. Study on amino acid salt aqueous solid-liquid phase change absorbent for energy-efficient CO2 capture[J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50(4): 122-130. | |
| [34] | 刘忠海. [N1111][Gly]复合工质吸收/解吸CO2性能研究[D]. 重庆: 重庆大学, 2014. |
| LIU Zhonghai. Performance of carbon dioxide absorption/desorption in tetramethylammonium glycin complex solution[D]. Chongqing: Chongqing University, 2014. | |
| [35] | 周诗岽, 陈小康, 边慧, 等. CO2水合物在管道中的生成及堵塞特性[J]. 化工进展, 2018, 37(11): 4250-4256. |
| ZHOU Shidong, CHEN Xiaokang, BIAN Hui, et al. CO2 hydrate formation in pipeline and its plugging characteristics[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4250-4256. | |
| [36] | 吴坤祥. 碳钢在氨基功能化离子液体捕集CO2体系中的腐蚀行为及缓蚀剂缓蚀性能研究[D]. 泉州: 华侨大学, 2019. |
| WU Kunxiang. Corrosion behavior of carbon steel and corrosion inhibition of inhibitor to carbon steel in amino-functionalized ionic liquids for CO2 capture[D]. Quanzhou: Huaqiao University, 2019. | |
| [37] | 张丽. 醇胺水溶液复配离子液体吸收CO2过程的腐蚀特性研究[D]. 北京: 华北电力大学, 2019. |
| ZHANG Li. Corrosion characteristics for CO2 capture process using functionalized ionic liquids activated amine aqueous solution[D]. Beijing: North China Electric Power University, 2019. | |
| [38] | Bihong LYU, YANG Kexuan, ZHOU Xiaobin, et al. 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture[J]. Applied Energy, 2020, 264: 114703. |
| [39] | 童守宝, 车春文, 殷勇高. CaBr2溶液除湿再生性能及腐蚀性实验研究[J]. 东南大学学报(自然科学版), 2022, 52(3): 425-432. |
| TONG Shoubao, CHE Chunwen, YIN Yonggao. Experimental study on dehumidification and regeneration performance and corrosiveness of CaBr2 solution[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 425-432. | |
| [40] | 杨雪莹. 三乙烯四胺甲酸盐无水混合体系吸收CO2的实验研究[D]. 武汉: 华中科技大学, 2019. |
| YANG Xueying. Experimental study on CO2 absorption by triethylenetetramine formate anhydrous mixed system[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
| [41] | 周天宇, 于宇新, 赵博, 等. 20#碳钢在HCO3 -和Cl-混合溶液中的点蚀行为研究[J]. 安全、健康和环境, 2020, 20(11): 30-34. |
| ZHOU Tianyu, YU Yuxin, ZHAO Bo, et al. Study on the pitting corrosion of 20# steel in HCO3 - and Cl- mixed solution[J]. Safety Health & Environment, 2020, 20(11): 30-34. | |
| [42] | 梁怀勇, 周小斌, 姚靖, 等. 羟乙基乙二胺/二甲基亚砜溶液高效捕集二氧化碳的性能及机理[J]. 环境化学, 2021, 40(6): 1895-1902. |
| LIANG Huaiyong, ZHOU Xiaobin, YAO Jing, et al. 2-(2-Aminoethylamino)ethanol/dimethyl sulfoxide solution for highlyefficient carbon dioxide capture: Performance and mechanism[J]. Environmental Chemistry, 2021, 40(6): 1895-1902. |
| [1] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [2] | 左启斌, 张涵, 孙传付, 胡桂林, 夏玉珍. 镍/石墨烯涂层在质子交换膜燃料电池泡沫金属流场上的应用[J]. 化工进展, 2025, 44(9): 5195-5201. |
| [3] | 刘通, 乔韦军, 赵思萌, 赵志萍, 汤琼, 刘雷, 董晋湘. 离子液体催化合成长链烷基萘基础油及其摩擦学性能[J]. 化工进展, 2025, 44(9): 5277-5284. |
| [4] | 陈思铭, 刘景超, 钟志轩, 张新柱, 祝天浩, 彭毅勍, 游赛, 王一凯, 袁嘉骏, 张永春. 低共熔溶剂在二氧化碳捕集中的发展与应用[J]. 化工进展, 2025, 44(9): 5377-5390. |
| [5] | 付映雪, 雷杨, 陈毓秋, 刘芯妍. 离子液体-二氧化碳体系UNIFAC模型的构建[J]. 化工进展, 2025, 44(8): 4862-4870. |
| [6] | 王肖肖, 孔福林, 李小宇, 任永强, 许世森. CO2吸收剂在开孔规整填料表面微尺度流动模拟[J]. 化工进展, 2025, 44(8): 4311-4321. |
| [7] | 付紫君, 宋学行, 沈群, 王晓波, 顾佳名, 汪丹峰, 魏伟, 孙楠楠. 基于LCA的CO2捕集-甲烷化一体化技术碳足迹分析[J]. 化工进展, 2025, 44(5): 2879-2887. |
| [8] | 汪柯, 胡登, 王星博, 孙楠楠, 魏伟. Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气[J]. 化工进展, 2025, 44(5): 2888-2897. |
| [9] | 赵天楠, 赵畅, 孙昊, 陆建民, 杨荟楠. 基于吸收光谱技术的冻结液滴高度测量系统[J]. 化工进展, 2025, 44(4): 1907-1912. |
| [10] | 王文, 金央, 李军, 陈建钧, 陈明, 孟昕. 基于FeOOH原位生长制备用于CO2吸收的超疏水PVDF膜[J]. 化工进展, 2025, 44(3): 1570-1577. |
| [11] | 韩英娜, 李丽, 张林子, 安金泽, 李文秀, 张弢. 离子液体萃取精馏分离甲醇-乙腈共沸物[J]. 化工进展, 2025, 44(2): 660-668. |
| [12] | 王沛琪, 代竟雄, 钟良. C/UV树脂电磁超材料的3D打印制备及微波吸收性能[J]. 化工进展, 2025, 44(10): 5819-5827. |
| [13] | 王栋, 贾瑞琪, 张博, 张娇娇, 肖家旺, 张亮亮. MDEA/DETA/[Bmim][BF4]/H2O相变吸收剂的开发及性能[J]. 化工进展, 2025, 44(10): 5891-5898. |
| [14] | 李鑫, 王维, 张羽, 谢湫钰, 袁昊. 分离乙酸乙酯+乙醇+水体系:离子液体筛选、汽液相平衡和过程模拟[J]. 化工进展, 2025, 44(1): 75-85. |
| [15] | 李乐天, 陆诗建, 刘含笑, 吴黎明, 刘玲, 康国俊. 有机胺富液解吸再生研究进展[J]. 化工进展, 2025, 44(1): 490-499. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |