化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1742-1753.DOI: 10.16085/j.issn.1000-6613.2023-0706
• 能源加工与技术 • 上一篇
收稿日期:
2023-04-28
修回日期:
2023-07-10
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
张胜振
作者简介:
蒋晨光(1991—),女,博士,从事煤炭综合利用技术研究。E-mail: 20046490@ceic.com。
基金资助:
JIANG Chenguang(), ZHANG Shengzhen(), ZHANG Cuiqing, GUO Yi, SUN Yongwei
Received:
2023-04-28
Revised:
2023-07-10
Online:
2024-04-15
Published:
2024-05-13
Contact:
ZHANG Shengzhen
摘要:
以煤间接液化的加氢精制减三线油为原料,采用溶剂萃取-结晶的方法制备52#费托蜡,并通过六西格玛设计对制备工艺进行开发。利用响应曲面设计中的中心复合设计建立响应值含油量、收率、熔点与剂油比、溶剂比、结晶时间、降温速率、结晶温度之间的数学模型,深入分析了各考察因素及其间的交互作用对响应值的影响。通过优化实验结果,验证模型,得到最佳的制备工艺参数组合以及较优的操作窗口,指导100kg/h中试试验顺利进行。研究结果表明:当剂油比为5、溶剂比为2、结晶时间6min、结晶温度5℃、降温速率为5.3℃/min时,实验室小试和中试试验产品蜡的熔点在52~54℃,含油量为0.2%~0.8%(质量分数),收率均大于25%(质量分数),产品符合国标GB/T446—2010《全精炼石蜡》的要求;实验值和模型预测值较为接近,模型的拟合效果好,预测精度高,质量可靠。
中图分类号:
蒋晨光, 张胜振, 张翠清, 郭屹, 孙永伟. 基于DFSS方法优化52#费托蜡的制备工艺[J]. 化工进展, 2024, 43(4): 1742-1753.
JIANG Chenguang, ZHANG Shengzhen, ZHANG Cuiqing, GUO Yi, SUN Yongwei. Optimization of the preparation process of 52# Fischer-Tropsch wax based on DFSS method[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1742-1753.
因子 | 代号 | 编码和水平 | ||||
---|---|---|---|---|---|---|
-1 | - | 0 | + | +1 | ||
剂油比 | X1 | 4.45 | 3.5 | 6.75 | 10 | 9.04 |
溶剂比 | X2 | 2.88 | 2 | 5 | 8 | 7.12 |
结晶时间/min | X3 | 2.19 | 0 | 7.5 | 15 | 12.80 |
降温速率/℃·min-1 | X4 | 5.48 | 5.3 | 5.9 | 6.5 | 6.32 |
结晶温度/℃ | X5 | 1.47 | 0 | 5 | 10 | 8.53 |
表1 实验因子及水平设置
因子 | 代号 | 编码和水平 | ||||
---|---|---|---|---|---|---|
-1 | - | 0 | + | +1 | ||
剂油比 | X1 | 4.45 | 3.5 | 6.75 | 10 | 9.04 |
溶剂比 | X2 | 2.88 | 2 | 5 | 8 | 7.12 |
结晶时间/min | X3 | 2.19 | 0 | 7.5 | 15 | 12.80 |
降温速率/℃·min-1 | X4 | 5.48 | 5.3 | 5.9 | 6.5 | 6.32 |
结晶温度/℃ | X5 | 1.47 | 0 | 5 | 10 | 8.53 |
序号 | X1 | X2 | X3/min | X4/℃·min-1 | X5/℃ | 熔点/℃ | 含油量(质量分数)/% | 收率(质量分数)/% |
---|---|---|---|---|---|---|---|---|
1 | 6.75 | 5 | 12.80 | 5.9 | 5 | 51.75 | 0.606 | 18.48 |
2 | 9.04 | 5 | 7.5 | 5.9 | 5 | 53.08 | 0.6 | 18.12 |
3 | 10 | 8 | 15 | 5.3 | 10 | 52.47 | 2.2 | 21.04 |
4 | 3.5 | 2 | 0 | 6.5 | 10 | 58.85 | 0 | 2.24 |
5 | 10 | 8 | 0 | 5.3 | 0 | 49.14 | 1.388 | 38.96 |
6 | 3.5 | 8 | 15 | 6.5 | 10 | 50.92 | 3.565 | 23.66 |
7 | 3.5 | 8 | 0 | 6.5 | 0 | 50.51 | 1.912 | 27.28 |
8 | 3.5 | 8 | 0 | 5.3 | 10 | 50.56 | 2.165 | 28 |
9 | 6.75 | 7.12 | 7.5 | 5.9 | 5 | 50.49 | 1.123 | 26.06 |
10 | 6.75 | 5 | 7.5 | 5.48 | 5 | 51.39 | 0.993 | 26.4 |
11 | 3.5 | 2 | 15 | 5.3 | 10 | 54.82 | 0.847 | 11.5 |
12 | 3.5 | 2 | 15 | 6.5 | 0 | 52.11 | 0.898 | 22.94 |
13 | 6.75 | 5 | 7.5 | 5.9 | 5 | 52.03 | 0.548 | 24.86 |
14 | 4.45 | 5 | 7.5 | 5.9 | 5 | 51.29 | 0.77 | 27.82 |
15 | 6.75 | 5 | 7.5 | 5.9 | 1.47 | 50.65 | 0.615 | 30.64 |
16 | 6.75 | 5 | 7.5 | 6.32 | 5 | 52.63 | 0.877 | 25.56 |
17 | 10 | 2 | 0 | 5.3 | 10 | 60.01 | 0.678 | 3.6 |
18 | 6.75 | 5 | 2.19 | 5.9 | 5 | 53.35 | 0.545 | 19.56 |
19 | 6.75 | 5 | 7.5 | 5.9 | 5 | 51.71 | 0.546 | 22.78 |
20 | 10 | 2 | 15 | 5.3 | 0 | 52.87 | 0.384 | 19.68 |
21 | 6.75 | 5 | 7.5 | 5.9 | 5 | 52.17 | 0.656 | 24.22 |
22 | 10 | 8 | 15 | 6.5 | 0 | 50.21 | 0.1 | 33.74 |
23 | 10 | 8 | 0 | 6.5 | 10 | 57.04 | 1.558 | 7.18 |
24 | 6.75 | 5 | 7.5 | 5.9 | 8.53 | 53.53 | 0.89 | 20.76 |
25 | 10 | 2 | 0 | 6.5 | 0 | 57.27 | 0.91 | 6.06 |
26 | 3.5 | 2 | 0 | 5.3 | 0 | 51.85 | 0.576 | 24.6 |
27 | 10 | 2 | 15 | 6.5 | 10 | 60.94 | 0.067 | 2.5 |
28 | 6.75 | 2.88 | 7.5 | 5.9 | 5 | 53.46 | 0.255 | 15.1 |
29 | 3.5 | 8 | 15 | 5.3 | 0 | 46.83 | 1.424 | 46.44 |
表2 DOE 设计矩阵及实验结果
序号 | X1 | X2 | X3/min | X4/℃·min-1 | X5/℃ | 熔点/℃ | 含油量(质量分数)/% | 收率(质量分数)/% |
---|---|---|---|---|---|---|---|---|
1 | 6.75 | 5 | 12.80 | 5.9 | 5 | 51.75 | 0.606 | 18.48 |
2 | 9.04 | 5 | 7.5 | 5.9 | 5 | 53.08 | 0.6 | 18.12 |
3 | 10 | 8 | 15 | 5.3 | 10 | 52.47 | 2.2 | 21.04 |
4 | 3.5 | 2 | 0 | 6.5 | 10 | 58.85 | 0 | 2.24 |
5 | 10 | 8 | 0 | 5.3 | 0 | 49.14 | 1.388 | 38.96 |
6 | 3.5 | 8 | 15 | 6.5 | 10 | 50.92 | 3.565 | 23.66 |
7 | 3.5 | 8 | 0 | 6.5 | 0 | 50.51 | 1.912 | 27.28 |
8 | 3.5 | 8 | 0 | 5.3 | 10 | 50.56 | 2.165 | 28 |
9 | 6.75 | 7.12 | 7.5 | 5.9 | 5 | 50.49 | 1.123 | 26.06 |
10 | 6.75 | 5 | 7.5 | 5.48 | 5 | 51.39 | 0.993 | 26.4 |
11 | 3.5 | 2 | 15 | 5.3 | 10 | 54.82 | 0.847 | 11.5 |
12 | 3.5 | 2 | 15 | 6.5 | 0 | 52.11 | 0.898 | 22.94 |
13 | 6.75 | 5 | 7.5 | 5.9 | 5 | 52.03 | 0.548 | 24.86 |
14 | 4.45 | 5 | 7.5 | 5.9 | 5 | 51.29 | 0.77 | 27.82 |
15 | 6.75 | 5 | 7.5 | 5.9 | 1.47 | 50.65 | 0.615 | 30.64 |
16 | 6.75 | 5 | 7.5 | 6.32 | 5 | 52.63 | 0.877 | 25.56 |
17 | 10 | 2 | 0 | 5.3 | 10 | 60.01 | 0.678 | 3.6 |
18 | 6.75 | 5 | 2.19 | 5.9 | 5 | 53.35 | 0.545 | 19.56 |
19 | 6.75 | 5 | 7.5 | 5.9 | 5 | 51.71 | 0.546 | 22.78 |
20 | 10 | 2 | 15 | 5.3 | 0 | 52.87 | 0.384 | 19.68 |
21 | 6.75 | 5 | 7.5 | 5.9 | 5 | 52.17 | 0.656 | 24.22 |
22 | 10 | 8 | 15 | 6.5 | 0 | 50.21 | 0.1 | 33.74 |
23 | 10 | 8 | 0 | 6.5 | 10 | 57.04 | 1.558 | 7.18 |
24 | 6.75 | 5 | 7.5 | 5.9 | 8.53 | 53.53 | 0.89 | 20.76 |
25 | 10 | 2 | 0 | 6.5 | 0 | 57.27 | 0.91 | 6.06 |
26 | 3.5 | 2 | 0 | 5.3 | 0 | 51.85 | 0.576 | 24.6 |
27 | 10 | 2 | 15 | 6.5 | 10 | 60.94 | 0.067 | 2.5 |
28 | 6.75 | 2.88 | 7.5 | 5.9 | 5 | 53.46 | 0.255 | 15.1 |
29 | 3.5 | 8 | 15 | 5.3 | 0 | 46.83 | 1.424 | 46.44 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 285.795 | 11 | 25.981 | 587.799 | <0.0001 |
X1 | 36.079 | 1 | 36.079 | 816.245 | 0.00000 |
X2 | 109.475 | 1 | 109.475 | 2476.746 | 0.00000 |
X3 | 13.575 | 1 | 13.575 | 307.121 | 0.00000 |
X4 | 23.947 | 1 | 23.947 | 541.782 | 0.00000 |
X5 | 79.906 | 1 | 79.906 | 1807.780 | 0.00000 |
X1X2 | 0.731 | 1 | 0.731 | 16.539 | 0.00080 |
14.547 | 1 | 14.547 | 329.109 | 0.00000 | |
X1X4 | 0.436 | 1 | 0.436 | 9.855 | 0.00598 |
X3X4 | 1.513 | 1 | 1.513 | 34.227 | 0.00002 |
X1X5 | 3.168 | 1 | 3.168 | 71.681 | 0.00000 |
X2X5 | 2.418 | 1 | 2.418 | 54.705 | 0.00000 |
残差 | 0.751 | 17 | 0.044 | — | — |
失拟项 | 0.640 | 15 | 0.043 | 0.767 | 0.6992 |
纯误差 | 0.111 | 2 | 0.055 | — | — |
R2=0.997378 | |||||
W=0.1803>0.05 |
表3 熔点回归模型的方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 285.795 | 11 | 25.981 | 587.799 | <0.0001 |
X1 | 36.079 | 1 | 36.079 | 816.245 | 0.00000 |
X2 | 109.475 | 1 | 109.475 | 2476.746 | 0.00000 |
X3 | 13.575 | 1 | 13.575 | 307.121 | 0.00000 |
X4 | 23.947 | 1 | 23.947 | 541.782 | 0.00000 |
X5 | 79.906 | 1 | 79.906 | 1807.780 | 0.00000 |
X1X2 | 0.731 | 1 | 0.731 | 16.539 | 0.00080 |
14.547 | 1 | 14.547 | 329.109 | 0.00000 | |
X1X4 | 0.436 | 1 | 0.436 | 9.855 | 0.00598 |
X3X4 | 1.513 | 1 | 1.513 | 34.227 | 0.00002 |
X1X5 | 3.168 | 1 | 3.168 | 71.681 | 0.00000 |
X2X5 | 2.418 | 1 | 2.418 | 54.705 | 0.00000 |
残差 | 0.751 | 17 | 0.044 | — | — |
失拟项 | 0.640 | 15 | 0.043 | 0.767 | 0.6992 |
纯误差 | 0.111 | 2 | 0.055 | — | — |
R2=0.997378 | |||||
W=0.1803>0.05 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 15.971 | 15 | 1.065 | 252.213 | <0.0001 |
X1 | 1.049 | 1 | 1.049 | 248.401 | 0.00000 |
X2 | 6.567 | 1 | 6.567 | 1555.510 | 0.00000 |
X3 | 0.007 | 1 | 0.007 | 1.622 | 0.22518 |
X4 | 0.032 | 1 | 0.032 | 7.507 | 0.01689 |
X5 | 0.798 | 1 | 0.798 | 188.949 | 0.00000 |
X1X2 | 0.782 | 1 | 0.782 | 185.317 | 0.00000 |
X1X3 | 0.933 | 1 | 0.933 | 221.041 | 0.00000 |
0.026 | 1 | 0.026 | 6.078 | 0.02838 | |
X1X4 | 0.713 | 1 | 0.713 | 168.934 | 0.00000 |
X2X4 | 0.020 | 1 | 0.020 | 4.776 | 0.04775 |
0.210 | 1 | 0.210 | 49.762 | 0.00001 | |
X2X5 | 2.132 | 1 | 2.132 | 504.923 | 0.00000 |
X3X5 | 1.133 | 1 | 1.133 | 268.417 | 0.00000 |
X4X5 | 0.035 | 1 | 0.035 | 8.283 | 0.01294 |
0.021 | 1 | 0.021 | 4.935 | 0.04469 | |
残差 | 0.055 | 13 | 0.004 | — | — |
失拟项 | 0.047 | 11 | 0.004 | 1.078 | 0.5758 |
纯误差 | 0.008 | 2 | 0.004 | — | — |
R2=0.996 | |||||
R2Adj=0.992 | |||||
W=0.4765>0.05 |
表4 含油量模型的方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 15.971 | 15 | 1.065 | 252.213 | <0.0001 |
X1 | 1.049 | 1 | 1.049 | 248.401 | 0.00000 |
X2 | 6.567 | 1 | 6.567 | 1555.510 | 0.00000 |
X3 | 0.007 | 1 | 0.007 | 1.622 | 0.22518 |
X4 | 0.032 | 1 | 0.032 | 7.507 | 0.01689 |
X5 | 0.798 | 1 | 0.798 | 188.949 | 0.00000 |
X1X2 | 0.782 | 1 | 0.782 | 185.317 | 0.00000 |
X1X3 | 0.933 | 1 | 0.933 | 221.041 | 0.00000 |
0.026 | 1 | 0.026 | 6.078 | 0.02838 | |
X1X4 | 0.713 | 1 | 0.713 | 168.934 | 0.00000 |
X2X4 | 0.020 | 1 | 0.020 | 4.776 | 0.04775 |
0.210 | 1 | 0.210 | 49.762 | 0.00001 | |
X2X5 | 2.132 | 1 | 2.132 | 504.923 | 0.00000 |
X3X5 | 1.133 | 1 | 1.133 | 268.417 | 0.00000 |
X4X5 | 0.035 | 1 | 0.035 | 8.283 | 0.01294 |
0.021 | 1 | 0.021 | 4.935 | 0.04469 | |
残差 | 0.055 | 13 | 0.004 | — | — |
失拟项 | 0.047 | 11 | 0.004 | 1.078 | 0.5758 |
纯误差 | 0.008 | 2 | 0.004 | — | — |
R2=0.996 | |||||
R2Adj=0.992 | |||||
W=0.4765>0.05 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 2925.057 | 8 | 365.632 | 64.488 | <0.0001 |
X1 | 217.152 | 1 | 217.152 | 38.300 | 0.0000 |
X2 | 1168.309 | 1 | 1168.309 | 206.059 | 0.0000 |
X3 | 107.840 | 1 | 107.840 | 19.020 | 0.0000 |
X4 | 278.555 | 1 | 278.555 | 49.129 | 0.0000 |
X5 | 948.261 | 1 | 948.261 | 167.248 | 0.0003 |
72.162 | 1 | 72.162 | 12.727 | 0.00102 | |
X3X4 | 83.631 | 1 | 83.631 | 14.750 | 0.00193 |
26.589 | 1 | 26.589 | 4.689 | 0.04261 | |
残差 | 113.395 | 20 | 5.669 | — | — |
失拟项 | 111.126 | 18 | 6.174 | 5.439 | 0.1664 |
纯误差 | 2.270 | 2 | 1.135 | — | — |
R2=0.962 | |||||
R2Adj=0.947 | |||||
W=0.1532>0.05 |
表5 收率模型的方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 2925.057 | 8 | 365.632 | 64.488 | <0.0001 |
X1 | 217.152 | 1 | 217.152 | 38.300 | 0.0000 |
X2 | 1168.309 | 1 | 1168.309 | 206.059 | 0.0000 |
X3 | 107.840 | 1 | 107.840 | 19.020 | 0.0000 |
X4 | 278.555 | 1 | 278.555 | 49.129 | 0.0000 |
X5 | 948.261 | 1 | 948.261 | 167.248 | 0.0003 |
72.162 | 1 | 72.162 | 12.727 | 0.00102 | |
X3X4 | 83.631 | 1 | 83.631 | 14.750 | 0.00193 |
26.589 | 1 | 26.589 | 4.689 | 0.04261 | |
残差 | 113.395 | 20 | 5.669 | — | — |
失拟项 | 111.126 | 18 | 6.174 | 5.439 | 0.1664 |
纯误差 | 2.270 | 2 | 1.135 | — | — |
R2=0.962 | |||||
R2Adj=0.947 | |||||
W=0.1532>0.05 |
1 | 相宏伟, 杨勇, 李永旺. 煤炭间接液化: 从基础到工业化[J]. 中国科学:化学, 2014, 44(12): 1876-1892. |
XIANG Hongwei, YANG Yong, LI Yongwang. Indirect coal-to-liquids technology from fundamental research to commercialization[J]. Scientia Sinica Chimica, 2014, 44(12): 1876-1892. | |
2 | ZHAI Peng, LI Yinwen, WANG Meng, et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route[J]. Chem, 2021, 7(11): 3027-3051. |
3 | A Yu KRYLOVA. Products of the Fischer-Tropsch synthesis (a review)[J]. Solid Fuel Chemistry, 2014, 48(1): 22-35. |
4 | GRUBER Hannes, LINDNER Lukas, ARLT Stefan, et al. A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application[J]. Journal of Cleaner Production, 2020, 275: 124135. |
5 | IVANOVA I K, KASHIRTSEV V A, SEMENOV M E, et al. Effect of the solvent composition on the content of the crystalline phase and melting temperature of paraffin waxes[J]. Russian Journal of Applied Chemistry, 2020, 93(4): 603-610. |
6 | MOHAMED N H, ZAKY M T, FARAG A S, et al. Separation of paraffin wax using solvent fractionation[J]. Petroleum Science and Technology, 2008, 26(5): 562-574. |
7 | 郑立辉. 尿素包合法制取低熔点石蜡的研究[J]. 精细石油化工, 2002, 19(6): 11-13. |
ZHENG Lihui. Preparation of low melting point paraffin by urea-adduct method[J]. Speciality Petrochemicals, 2002, 19(6): 11-13. | |
8 | ZAKY Magdy T, MOHAMED Nermen H, FARAG Amal S. Separation of some paraffin wax grades using solvent extraction technique[J]. Fuel Processing Technology, 2011, 92(10): 2024-2029. |
9 | ZAKY Magdy T, MOHAMED Nermen H, FARAG Amal S. Separation of different paraffin wax grades using two comparative deoiling techniques[J]. Fuel Processing Technology, 2007, 88(9): 913-920. |
10 | 孙东旭, 戴咏川, 齐程远, 等. 费-托合成蜡溶剂精制及其结构与性质的研究[J]. 石油炼制与化工, 2016, 47(11): 78-81. |
SUN Dongxu, DAI Yongchuan, QI Chengyuan, et al. Research on F-T wax solvent deoiling and wax structure and properties[J]. Petroleum Processing and Petrochemicals, 2016, 47(11): 78-81. | |
22 | XU Chunming, YANG Chaohe. Petroleum refining engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 554-556. |
23 | MOKHLIF Nassir D, AL-KAYIEM Hussain H, BAHAROM M B. Estimation model for the wax crystal size distribution in solvent dewaxing process[J]. Journal of Applied Sciences, 2012, 12(24): 2548-2554. |
24 | MOHAMED Nermen H. Competitive study on separation and characterization of microcrystalline waxes using two deoiling techniques[J]. Fuel Processing Technology, 2012, 96: 116-122. |
25 | 陈洁, 陈侠. 制备碳酸锂结晶的工艺优化[J]. 无机盐工业, 2019, 51(8): 29-32. |
CHEN Jie, CHEN Xia. Crystallization process optimization for preparation of lithium carbonate[J]. Inorganic Chemicals Industry, 2019, 51(8): 29-32. | |
26 | 水天德. 现代润滑油生产工艺[M]. 北京: 中国石化出版社, 1997: 233-240. |
SHUI Tiande. Modern lubricating oil production technology[M]. Beijing: China Petrochemical Press, 1997: 233-240. | |
27 | NIKITIN K V, D’YACHKOV V N, NIKITIN V I, et al. Influence of temperature conditions on the shrinkage of wax patterns for investment casting[J]. IOP Conference Series: Materials Science and Engineering, 2020, 919(2): 022041. |
28 | 张有云. 图像数据过程能力分析系统研究[D]. 昆明: 昆明理工大学, 2021. |
ZHANG Youyun. Research on image data process capability analysis system[D]. Kunming: Kunming University of Science and Technology, 2021. | |
11 | 吴文广. 酮苯二段低温脱蜡-二段脱油工艺研究[D]. 上海: 华东理工大学, 2019. |
WU Wenguang. Study on two-stage low temperature dewaxing-two-stage deoiling process of ketone-benzene[D]. Shanghai: East China University of Science and Technology, 2019. | |
12 | 南远方. 酮苯装置脱蜡结晶工艺因素研究[D]. 北京: 北京化工大学, 2015. |
Yuanfang NAN. Study on technological factors of dewaxing and crystallization in ketone-benzene plant[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
13 | ESLAMI Akbar, ASADI Anvar, MESERGHANI Maryam, et al. Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM)[J]. Journal of Molecular Liquids, 2016, 222: 739-744. |
14 | 程永春, 徐志枢, 马桂荣, 等. 基于响应曲面法的SMA沥青混合料试验研究[J]. 应用基础与工程科学学报, 2021, 29(2): 493-502. |
CHENG Yongchun, XU Zhishu, MA Guirong, et al. Response surface method for asphalt mixture design[J]. Journal of Basic Science and Engineering, 2021, 29(2): 493-502. | |
15 | 胡菊华. 基于残差分析的线性回归模型的诊断与修正[J]. 统计与决策, 2019, 35(24): 5-8. |
HU Juhua. Diagnosis and correction of linear regression model based on residual analysis[J]. Statistics & Decision, 2019, 35(24): 5-8. | |
16 | 李锐, 姜永华, 张燕玲, 等. 基于响应曲面法优化硫酸铵结晶[J]. 硅酸盐学报, 2022, 50(3): 782-790. |
LI Rui, JIANG Yonghua, ZHANG Yanling, et al. Optimisation of ammonium sulphate crystallization based on response surface methodology[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 782-790. | |
17 | NOORDIN M Y, VENKATESH V C, SHARIF S, et al. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel[J]. Journal of Materials Processing Technology, 2004, 145(1): 46-58. |
18 | 李恒, 来倩, 何沛, 等. 高介孔率烟梗基活性炭的优化制备[J]. 化学研究, 2021, 32(5): 438-444. |
LI Heng, LAI Qian, HE Pei, et al. Preparation of tobacco stem-based activated carbon with high mesoporosity[J]. Chemical Research, 2021, 32(5): 438-444. | |
19 | 洪东峰. 基于响应面方法的聚丙烯流程模拟与优化[D]. 北京: 北京理工大学, 2013. |
HONG Dongfeng. Simulation and optimization of polypropylene process based on pesponse sruface method[D]. Beijing: Beijing Institute of Technololy, 2013. | |
20 | YETILMEZSOY Kaan, SARAL Arslan. Stochastic modeling approaches based on neural network and linear-nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers[J]. Environmental Modeling & Assessment, 2007, 12(1): 13-26. |
21 | 苗恒, 李俊诚, 钱震, 等. 费托合成蜡脱油技术及其研究进展[J]. 当代化工研究, 2020(14): 138-139. |
MIAO Heng, LI Juncheng, QIAN Zhen, et al. Research progress of deoiling technology of Fischer Tropsch synthetic wax[J]. Modern Chemical Research, 2020(14): 138-139. | |
22 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 554-556. |
[1] | 张敏, 叶航, 包琦, 刘琦, 荆铁亚, 袁浩伟, 赵文韬, 王晓龙, 鲜成钢. CO2原位矿化选址关键参数及其封存潜力评估研究进展[J]. 化工进展, 2024, 43(3): 1492-1505. |
[2] | 高增林, 张乾, 高晨明, 杨凯, 高志华, 黄伟. 水煤浆煤气化粗渣水流分级提炭分质[J]. 化工进展, 2024, 43(3): 1576-1583. |
[3] | 苗丰, 许传龙, 李健, 张彪, 韩少鹏, 汤光华. 基于SO2吸收谱线的光谱仪波长在线校准方法[J]. 化工进展, 2024, 43(2): 818-822. |
[4] | 李龙, 邢宝林, 鲍倜傲, 靳鹏, 曾会会, 郭晖, 张越, 张文豪. 微扩层改性对煤基石墨微观结构和储锂性能的影响[J]. 化工进展, 2023, 42(12): 6259-6269. |
[5] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[6] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[7] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[8] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[9] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
[10] | 王光宇, 孟境辉, 张锴. 煤泥间歇微波干燥模拟及介电性质[J]. 化工进展, 2023, 42(4): 1779-1786. |
[11] | 王哲, 余颖, 石永杰, 杨顺, 陈久洲, 崔希利, 邢华斌. 尿素包合法分离费托轻质油中的正构烃[J]. 化工进展, 2023, 42(2): 677-683. |
[12] | 闫国春, 温亮, 张华. 现代煤化工产业发展路径分析[J]. 化工进展, 2022, 41(12): 6201-6212. |
[13] | 贠宏飞, 赵鹬, 李贵贤. 载体表面羟基种类对DMO加氢用Cu/SiO2催化剂性能的影响[J]. 化工进展, 2022, 41(12): 6338-6349. |
[14] | 周怀荣, 马迎文, 王可, 李红伟, 孟文亮, 谢江鹏, 李贵贤, 张栋强, 王东亮, 赵永臣. 化学链空分联合化学链制氢的煤制甲醇过程参数优化与分析[J]. 化工进展, 2022, 41(10): 5332-5341. |
[15] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |