1 |
LIU Huazhang, LI Xiaonian. The precursor phase composition of iron catalyst and discovery of FeO based catalyst for ammonia synthesis[J]. Science China-Chemistry, 1995, 38: 529-537.
|
2 |
LIU Huazhang. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge[J]. Chinese Journal of Catalysis, 2014, 35(10): 1619-1640.
|
3 |
刘化章, 李小年, 胡樟能, 等. Fe1- x O基氨合成催化剂的制备化学[J]. 高等学校化学学报, 2002, 23(1): 87-91.
|
|
LIU Huazhang, LI Xiaonian, HU Zhangneng, et al. Preparation chemistry of Fe1- x O based catalyst for ammonia synthesis[J]. Chemical Research in Chinese Universities, 2002, 23(1): 87-91.
|
4 |
LIU Huazhang, LI Xiaonian. Study on the composition of parent phase of iron Catalyst and Discovery of FeO based ammonia synthesis catalyst[J]. Science in China, 1995, 25(1): 1-6.
|
5 |
陈志军, 严海宇, 蓝国钧,等. 助催化剂对Fe1- x O基氨合成催化剂性能的影响[J]. 工业催化, 2013, 21(5): 41-45.
|
|
CHEN Zhijun, YAN Haiyu, LAN Guojun, et al. Influence of promoters on the performance of Fe1- x O based catalyst for ammonia synthesis[J]. Industrial Catalysis, 2013, 21(5): 41-45.
|
6 |
李小年, 刘化章, 陈诵英. 助催化剂对Fe1- x O基氨合成催化剂活性的影响[J]. 催化学报, 1998, 19(3): 201-205.
|
|
LI Xiaonian, LIU Huazhang, CHEN Songying. Studies on the effect of promoters on the activity of Fe1- x O based ammonia synthesis[J]. Chinese Journal of Catalysis, 1998, 19(3): 201-205.
|
7 |
陈志军. Fe1- x O基氨合成催化剂助催化剂的选择与优化[D]. 杭州: 浙江工业大学, 2013.
|
|
CHEN Zhijun. Exprolation and optimization of promoters of Fe1- x O based catalysts for ammonia synthesis[D]. Hangzhou: Zhejiang University of Technology, 2013.
|
8 |
李林辉, 刘化章, 韩文锋, 等. SrO助催化剂对Fe1- x O基熔铁氨合成催化剂性能的影响[J]. 化工进展, 2019, 38(3): 1371-1376.
|
|
LI Linhui, LIU Huazhang, HAN Wenfeng, et al. Effect of SrO promoter on the activity and thermal-stability of wüstite based catalyst for ammonia synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1371-1376.
|
9 |
孙珍珍, 刘化章, 叶攀, 等. Fe1- x O基氨合成催化剂助催化剂的优选[J]. 化工进展, 2022,41(4): 1886-1893.
|
|
SUN Zhenzhen, LIU Huazhang, YE Pan, et al. Optimization of promoters for Fe1- x O-based ammonia synthesis catalyst[J]. Chemical Industry and Engineering Progress, 2022,41(4): 1886-1893.
|
10 |
HAN Wenfeng, HUANG Shiliang, CHENG Tianhong, et al. Promotion of Nb2O5 on the wüstite-based iron catalyst for ammonia synthesis[J]. Applied Surface Science, 2015, 353: 17-23.
|
11 |
LIU Huazhang, LI Xiaonian. Precursor of iron catalyst for ammonia synthesis: Fe3O4, Fe1- x O, Fe2O3 or their mixture?[J]. Studies in Surface Science and Catalysis, 2000, 130: 2207-2212.
|
12 |
郑启富. 计算智能在氨合成催化剂设计与工艺优化中的应用[D]. 杭州: 浙江工业大学, 2012.
|
|
ZHENG Qifu. Application of computational intelligence in catalyst design and process optimization of ammonia synthesis[D]. Hangzhou: Zhejiang University of Technology, 2012.
|
13 |
AGHAREZAEI P, SAHU T, SHOCK J, et al. Designing catalysts via evolutionary-based optimization techniques[J]. Computational Materials Science, 2023, 216: 111833.
|
14 |
刘方, 徐龙, 马晓迅. BP神经网络的发展及其在化学化工中的应用[J]. 化工进展, 2019, 38(6): 2559-2573.
|
|
LIU Fang, XU Long, MA Xiaoxun. Development of BP neural network and its application in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2559-2573.
|
15 |
GARONA H A, CAVALCANTI F M, DE ABREU T F, et al. Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network[J]. Journal of Cleaner Production, 2021, 321: 129003.
|
16 |
温正. 精通MATLAB智能算法[M]. 北京: 清华大学出版社, 2015.
|
|
WEN Zheng. Proficient in MATLAB intelligent algorithm[M]. Beijing: Tsinghua University Press, 2015.
|
17 |
雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 2版. 西安: 西安电子科技大学出版社, 2014.
|
|
LEI Yingjie, ZHANG Shanwen. MATLAB genetic algorithm toolbox and its application[M]. 2nd ed. Xi’an: Xidian University Press, 2014.
|
18 |
刘鹏程, 李新利. 基于多种群遗传算法的含分布式电源的配电网故障区段定位算法[J]. 电力系统保护与控制, 2016, 44(2): 36-41.
|
|
LIU Pengcheng, LI Xinli. Fault-section location of distribution network containing distributed generation based on the multiple-population genetic algorithm[J]. Power System Protection and Control, 2016, 44(2): 36-41.
|
19 |
石磊, 高卫红, 吕莉莉, 等. 基于BP人工神经网络和遗传算法的葛根总黄酮提取工艺优化研究[J]. 中国中医急症, 2018, 27(2): 198-201.
|
|
SHI Lei, GAO Weihong, Lili LYU, et al. Research on extraction process optimization for total flavones in radix puerariae based on back propagation artificial neural network and genetic algorithm[J]. Journal of Emergency in Traditional Chinese Medicine, 2018, 27(2): 198-201.
|
20 |
MESBAH M, SOLTANALI S, BAHRANIFARD Z, et al. Production of thymol from alkylation of m-cresol with isopropanol over ZSM-5 catalysts: Artificial neural network (ANN) modelling[J]. Journal of the Indian Chemical Society, 2023, 100(2): 100882.
|
21 |
PAJAK M, BUCHANIEC S, KIMIJIMA S, et al. A multiobjective optimization of a catalyst distribution in a methane/steam reforming reactor using a genetic algorithm[J]. International Journal of Hydrogen Energy, 2021, 46(38): 20183-20197.
|
22 |
ZAFARI M, KUMAR D, UMER M, et al. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts[J]. Journal of Materials Chemistry A, 2020, 8(10): 5209-5216.
|
23 |
CHANDANA K S, KARKA S, GUJRAL M K, et al. Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109555.
|
24 |
QIU Huixian, XIA Xuewen, LI Yuanxiang, et al. A dynamic multipopulation genetic algorithm for multiobjective workflow scheduling based on the longest common sequence[J]. Swarm and Evolutionary Computation, 2023, 78: 101291.
|
25 |
YE Jiahao, PENG Qingguo. Improved emissions conversion of diesel oxidation catalyst using multifactor impact analysis and neural network[J]. Energy, 2023, 271: 127048.
|
26 |
FAN Haonan, YANG Xiaodie, MA Jing, et al. Computer-assisted design of asymmetric PNP ligands for ethylene tri-/tetramerization: A combined DFT and artificial neural network approach[J]. Journal of Catalysis, 2023, 418: 121-129.
|
27 |
刘科研, 盛万兴, 马晓晨, 等. 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42(6): 146-155.
|
|
LIU Keyan, SHENG Wanxing, MA Xiaochen, et al. Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 146-155.
|