化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1178-1198.DOI: 10.16085/j.issn.1000-6613.2023-0401
• 能源加工与技术 • 上一篇
吴锋明1,2(), 李帅旗1,2, 何世辉2, 宋文吉1,2(), 冯自平1,2
收稿日期:
2023-03-16
修回日期:
2023-05-08
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
宋文吉
作者简介:
吴锋明(1999—),男,硕士研究生,研究方向为高温热泵技术及应用。E-mail:wufm@ms.giec.ac.cn。
基金资助:
WU Fengming1,2(), LI Shuaiqi1,2, HE Shihui2, SONG Wenji1,2(), FENG Ziping1,2
Received:
2023-03-16
Revised:
2023-05-08
Online:
2024-03-10
Published:
2024-04-11
Contact:
SONG Wenji
摘要:
在“双碳”战略的背景下,大温升热泵技术不仅低碳节能,而且能够有效利用更低品位热能,向更高温领域发展。本文概述了大温升蒸汽压缩式热泵系统(大温升系统)优化的研究进展,从制冷剂、组件、循环优化、示范验证四个方面详细分析了大温升系统可行的优化手段。分析表明:当前大温升系统实践工程的常用制冷剂仍以R134a、R245fa等高GWP制冷剂为主;而在大温升制冷剂筛选方面,自然纯制冷剂中二氧化碳(R744)适用温度范围广泛,性能表现优异;水(R718)是大温升系统突破超高温(150℃)限制的潜力制冷剂之一;有机纯制冷剂发展迅速,R1234ze(Z)、R1336mzz(Z)等具有极低的GWP与优异的热力学性质;制备R32基、HFOs基、CO2基混合制冷剂低GWP的混合制冷剂是当前具有前景的思路;在组件优化方面,压缩机变频技术等成熟技术为大温升系统组件优化提供了现行方案;磁悬浮轴承技术工业产品走向成熟,可有效降低大温升系统摩擦损失;线结构换热器技术等新兴技术为大温升系统提供了新的组件优化思路;在循环优化方面,补气/补液增焓与多级压缩等成熟技术为大温升系统循环优化提供了现行方案;喷射技术与涡流管技术等研究成果对大温升系统具有优化效果,但受到工程实践经验缺少、机理研究不明等方面限制;结合示范验证部分,补气增焓技术是目前适用范围最宽泛、工业运用最成熟的大温升系统优化技术,一定条件下可提高大温升系统性能系数20%以上;串联多级压缩技术与复叠式压缩技术是提高系统温升范围、保障低温供暖的有力手段。
中图分类号:
吴锋明, 李帅旗, 何世辉, 宋文吉, 冯自平. 大温升蒸汽压缩式热泵系统优化研究进展[J]. 化工进展, 2024, 43(3): 1178-1198.
WU Fengming, LI Shuaiqi, HE Shihui, SONG Wenji, FENG Ziping. Research progress on optimization of large temperature-lift vapor compression heat pump system[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1178-1198.
100年GWP | 描述分类 |
---|---|
<30 | 极低或者可忽略不计 |
<100 | 低 |
<300 | 较低 |
300~1000 | 中等 |
>1000 | 高 |
>3000 | 较高 |
>10000 | 极高 |
表1 2018年TEAP替代品评估GWP分类
100年GWP | 描述分类 |
---|---|
<30 | 极低或者可忽略不计 |
<100 | 低 |
<300 | 较低 |
300~1000 | 中等 |
>1000 | 高 |
>3000 | 较高 |
>10000 | 极高 |
制冷剂分类 | 制冷剂名称 | ODP | GWP | 临界压力 /MPa | 临界温度 /℃ | 冷凝潜热(30℃饱和状态下) /kJ·kg-1 | 大温升理论压缩比 (蒸发/冷凝温度) | 参考 文献 |
---|---|---|---|---|---|---|---|---|
自然制冷剂 | R718 | 0 | <1 | 22.12 | 374.2 | 2429.0 | 5.53(110/170℃) | [ |
R744 | 0 | 1 | 7.38 | 31.1 | Non① | 2.34(-20/40℃) 2.21(5/65℃) | [ | |
R717 | 0 | <1 | 11.33 | 132.3 | 1144.6 | 5.718(5/65℃) | [ | |
有机纯制冷剂 | ||||||||
HCs族制冷剂 | R290 | 0 | <3 | 4.25 | 96.7 | 326.7 | 5.60(-20/40℃) 4.26(5/65℃) | [ |
R600 | 0 | 约20 | 3.80 | 152.0 | 356.3 | 4.26(5/65℃) 3.97(60/120℃) | [ | |
R600a | 0 | 约3 | 3.63 | 134.7 | 323.3 | 5.23(5/65℃) 3.38(60/120℃) | [ | |
氢氟烯烃(HFOs)族制冷剂 | R1234ze(Z) | 0 | <1 | 3.53 | 150.1 | 203.1 | 4.74(60/120℃) | [ |
R1234ze(E) | 0 | <1 | 3.63 | 109.4 | 163.1 | 5.53(5/65℃) | [ | |
R1336mzz(Z) | 0 | <10 | 2.90 | 171.35 | 166.2 | 4.50(60/120℃) | [ | |
R1234yf | 0 | <1 | 3.38 | 94.7 | 141.2 | 4.92(5/65℃) | [ | |
HCFOs族制冷剂 | R1233zd(E) | 0② | 1 | 3.62 | 166.5 | 188.5 | 4.03(60/120℃) | [ |
R1224yd(Z) | 0② | <1 | 3.33 | 155.5 | 161.5 | 3.97(60/120℃) | [ | |
混合制冷剂 | ||||||||
R32基混合制冷剂 | R454a | 0 | 239 | 4.63 | 81.7 | 173.3 | 4.12(5/65℃) | [ |
R457a | 0 | 139 | 4.30 | 90.0 | 172.2 | 5.98(-20/40℃) 4.46(5/65℃) | [ | |
HFOs基混合制冷剂 | R445a | 0 | 130 | 4.54 | 106.1 | 167.9 | 3.80(5/65℃) | [ |
R454c | 0 | 146 | 4.31 | 82.4 | 193.0 | 5.84(-20/40℃) 4.36(5/65℃) | [ | |
CO2基混合制冷剂 | R744/R600a(7%/93%) | 0 | 20 | 4.41 | 146.2 | 341.82 | 4.11(60/120℃) | [ |
R455a | 0 | 145 | 4.65 | 85.6 | 252.1 | 4.04(5/65℃) | [ |
表2 部分制冷剂对比
制冷剂分类 | 制冷剂名称 | ODP | GWP | 临界压力 /MPa | 临界温度 /℃ | 冷凝潜热(30℃饱和状态下) /kJ·kg-1 | 大温升理论压缩比 (蒸发/冷凝温度) | 参考 文献 |
---|---|---|---|---|---|---|---|---|
自然制冷剂 | R718 | 0 | <1 | 22.12 | 374.2 | 2429.0 | 5.53(110/170℃) | [ |
R744 | 0 | 1 | 7.38 | 31.1 | Non① | 2.34(-20/40℃) 2.21(5/65℃) | [ | |
R717 | 0 | <1 | 11.33 | 132.3 | 1144.6 | 5.718(5/65℃) | [ | |
有机纯制冷剂 | ||||||||
HCs族制冷剂 | R290 | 0 | <3 | 4.25 | 96.7 | 326.7 | 5.60(-20/40℃) 4.26(5/65℃) | [ |
R600 | 0 | 约20 | 3.80 | 152.0 | 356.3 | 4.26(5/65℃) 3.97(60/120℃) | [ | |
R600a | 0 | 约3 | 3.63 | 134.7 | 323.3 | 5.23(5/65℃) 3.38(60/120℃) | [ | |
氢氟烯烃(HFOs)族制冷剂 | R1234ze(Z) | 0 | <1 | 3.53 | 150.1 | 203.1 | 4.74(60/120℃) | [ |
R1234ze(E) | 0 | <1 | 3.63 | 109.4 | 163.1 | 5.53(5/65℃) | [ | |
R1336mzz(Z) | 0 | <10 | 2.90 | 171.35 | 166.2 | 4.50(60/120℃) | [ | |
R1234yf | 0 | <1 | 3.38 | 94.7 | 141.2 | 4.92(5/65℃) | [ | |
HCFOs族制冷剂 | R1233zd(E) | 0② | 1 | 3.62 | 166.5 | 188.5 | 4.03(60/120℃) | [ |
R1224yd(Z) | 0② | <1 | 3.33 | 155.5 | 161.5 | 3.97(60/120℃) | [ | |
混合制冷剂 | ||||||||
R32基混合制冷剂 | R454a | 0 | 239 | 4.63 | 81.7 | 173.3 | 4.12(5/65℃) | [ |
R457a | 0 | 139 | 4.30 | 90.0 | 172.2 | 5.98(-20/40℃) 4.46(5/65℃) | [ | |
HFOs基混合制冷剂 | R445a | 0 | 130 | 4.54 | 106.1 | 167.9 | 3.80(5/65℃) | [ |
R454c | 0 | 146 | 4.31 | 82.4 | 193.0 | 5.84(-20/40℃) 4.36(5/65℃) | [ | |
CO2基混合制冷剂 | R744/R600a(7%/93%) | 0 | 20 | 4.41 | 146.2 | 341.82 | 4.11(60/120℃) | [ |
R455a | 0 | 145 | 4.65 | 85.6 | 252.1 | 4.04(5/65℃) | [ |
研究者 | 研究方法 | 采用工质 | 蒸发温度/℃ | 冷凝(气冷)温度/℃ | 温升范围/℃ | COP |
---|---|---|---|---|---|---|
Wu等 [ | 实验 | R718 | 75~85 | 110~150 | 35~65 | 1.9~6.1 |
沈九兵等[ | 模拟 | R718 | 75~90 | 120~130 | 30~55 | 4.0~11.1 |
于振国等[ | 模拟 | R744 | -25~-5 | 50~70 | 45~65℃ | 1.8~2.4 |
Wang等[ | 实验 | R744 | -25~-15 | 35~45 | 15~55 | 1.5~2.4 |
Ivanovski等[ | 模拟 | R717 | -20~25 | 65~80 | 40~100 | 2.9~6.5 |
Zhao等[ | 实验 | R717 | 25~35 | 75~105 | 50~70 | 3.0~5.5 |
表3 自然制冷剂热泵系统研究列表
研究者 | 研究方法 | 采用工质 | 蒸发温度/℃ | 冷凝(气冷)温度/℃ | 温升范围/℃ | COP |
---|---|---|---|---|---|---|
Wu等 [ | 实验 | R718 | 75~85 | 110~150 | 35~65 | 1.9~6.1 |
沈九兵等[ | 模拟 | R718 | 75~90 | 120~130 | 30~55 | 4.0~11.1 |
于振国等[ | 模拟 | R744 | -25~-5 | 50~70 | 45~65℃ | 1.8~2.4 |
Wang等[ | 实验 | R744 | -25~-15 | 35~45 | 15~55 | 1.5~2.4 |
Ivanovski等[ | 模拟 | R717 | -20~25 | 65~80 | 40~100 | 2.9~6.5 |
Zhao等[ | 实验 | R717 | 25~35 | 75~105 | 50~70 | 3.0~5.5 |
研究者 | 研究方法 | 采用工质 | 蒸发温度/℃ | 冷凝温度/℃ | 温升范围/℃ | COP |
---|---|---|---|---|---|---|
Liu等[ | 实验 | R290 | -30~-10 | 50 | 50~70 | 1.9~4.2 |
Nawaz等[ | 模拟 | R290 | 10 | 60 | 50 | 3.6 |
潘利生等[ | 实验 | R600 | 30~50 | 60~95 | 10~50 | 3.0~5.5 |
Bamigbetan等[ | 模拟 | R600 | 50~70 | 115~135 | 40~75 | 2.1~3.2 |
Nawaz等[ | 模拟 | R600a | 10 | 60 | 50 | 3.2 |
Bamigbetan等[ | 模拟 | R600a | 50~70 | 115~135 | 40~75 | 1.5~3.1 |
Zhang等[ | 实验 | R1234ze(Z) | 25~40 | 70~85 | 45~58 | 3.0~3.5 |
Fukuda等[ | 模拟 | R1234ze(Z) | 60,80 | 110,130 | 50 | 6.3,6.6 |
Colombo等[ | 实验 | R1234ze(E) | -5~15 | 25~65 | 10~70 | 1.4~5.0 |
Kondou等[ | 模拟 | R1234ze(E) | 35 | 75~95 | 40~60 | 2.9~4.8 |
Sulaiman等[ | 模拟 | R1336mzz(Z) | 60,70 | 90~140 | 30~70 | 2.7~9.1 |
Arpagaus等[ | 实验 | R1336mzz(Z) | 30~70 | 80~130 | 30~70 | 1.3~4.0 |
Yildiz等[ | 实验 | R1234yf | -10~0 | 35 | 45 | 4.0~4.5 |
Alkan等[ | 实验 | R1234yf | -10,0 | 55~70 | 55~70 | 2.4~4.6 |
Mateu-Royo等[ | 模拟 | R1233zd(E) | 70~100 | 145 | 45~75 | 1.6~2.7 |
Alhamid等[ | 模拟 | R1233zd(E) | 50~70 | 110 | 40~60 | 2.7~4.7 |
Mateu-Royo等[ | 模拟 | R1224yd(Z) | 70~100 | 145 | 45~75 | 1.5~2.6 |
Arpagaus等[ | 实验 | R1224yd(Z) | 30~70 | 70~140 | 30~70 | 1.4~4.5 |
表4 有机纯制冷剂热泵系统研究列表
研究者 | 研究方法 | 采用工质 | 蒸发温度/℃ | 冷凝温度/℃ | 温升范围/℃ | COP |
---|---|---|---|---|---|---|
Liu等[ | 实验 | R290 | -30~-10 | 50 | 50~70 | 1.9~4.2 |
Nawaz等[ | 模拟 | R290 | 10 | 60 | 50 | 3.6 |
潘利生等[ | 实验 | R600 | 30~50 | 60~95 | 10~50 | 3.0~5.5 |
Bamigbetan等[ | 模拟 | R600 | 50~70 | 115~135 | 40~75 | 2.1~3.2 |
Nawaz等[ | 模拟 | R600a | 10 | 60 | 50 | 3.2 |
Bamigbetan等[ | 模拟 | R600a | 50~70 | 115~135 | 40~75 | 1.5~3.1 |
Zhang等[ | 实验 | R1234ze(Z) | 25~40 | 70~85 | 45~58 | 3.0~3.5 |
Fukuda等[ | 模拟 | R1234ze(Z) | 60,80 | 110,130 | 50 | 6.3,6.6 |
Colombo等[ | 实验 | R1234ze(E) | -5~15 | 25~65 | 10~70 | 1.4~5.0 |
Kondou等[ | 模拟 | R1234ze(E) | 35 | 75~95 | 40~60 | 2.9~4.8 |
Sulaiman等[ | 模拟 | R1336mzz(Z) | 60,70 | 90~140 | 30~70 | 2.7~9.1 |
Arpagaus等[ | 实验 | R1336mzz(Z) | 30~70 | 80~130 | 30~70 | 1.3~4.0 |
Yildiz等[ | 实验 | R1234yf | -10~0 | 35 | 45 | 4.0~4.5 |
Alkan等[ | 实验 | R1234yf | -10,0 | 55~70 | 55~70 | 2.4~4.6 |
Mateu-Royo等[ | 模拟 | R1233zd(E) | 70~100 | 145 | 45~75 | 1.6~2.7 |
Alhamid等[ | 模拟 | R1233zd(E) | 50~70 | 110 | 40~60 | 2.7~4.7 |
Mateu-Royo等[ | 模拟 | R1224yd(Z) | 70~100 | 145 | 45~75 | 1.5~2.6 |
Arpagaus等[ | 实验 | R1224yd(Z) | 30~70 | 70~140 | 30~70 | 1.4~4.5 |
研究者 | 研究方法 | 采用工质 | 蒸发温度/℃ | 冷凝温度/℃ | 温升范围/℃ | COP |
---|---|---|---|---|---|---|
Oruç等[ | 实验 | R454a | -5~5 | 30~50 | 25~55 | 1.2~3.2 |
Devecioğlu等[ | 模拟 | R457a | -25~0 | 30~40 | 30~65 | 3.2~6.2 |
Devecioğlu等[ | 模拟 | R445a | -5~5 | 30~60 | 25~65℃ | 1.7~5 |
闫伟国等[ | 实验 | R454c | -7 | 55 | 62 | 2.1 |
范晓伟等[ | 实验 | R744/R600a(7%/93%) | 10 | 70 | 60 | 3.7 |
Devecioğlu等[ | 模拟 | R455a | -5~5 | 35~55 | 30~60 | 1.1~3.0 |
表5 混合制冷剂热泵系统研究列表
研究者 | 研究方法 | 采用工质 | 蒸发温度/℃ | 冷凝温度/℃ | 温升范围/℃ | COP |
---|---|---|---|---|---|---|
Oruç等[ | 实验 | R454a | -5~5 | 30~50 | 25~55 | 1.2~3.2 |
Devecioğlu等[ | 模拟 | R457a | -25~0 | 30~40 | 30~65 | 3.2~6.2 |
Devecioğlu等[ | 模拟 | R445a | -5~5 | 30~60 | 25~65℃ | 1.7~5 |
闫伟国等[ | 实验 | R454c | -7 | 55 | 62 | 2.1 |
范晓伟等[ | 实验 | R744/R600a(7%/93%) | 10 | 70 | 60 | 3.7 |
Devecioğlu等[ | 模拟 | R455a | -5~5 | 35~55 | 30~60 | 1.1~3.0 |
优化技术 | 研究者 | 系统运行场景 | 工质 | 蒸发温度 /℃ | 冷凝(气冷) 温度①/℃ | 温升程度 /℃ | COP | 系统性能提升情况 |
---|---|---|---|---|---|---|---|---|
回热技术 | 王辉等[ | 利用油田低温余热制备55℃热水 | R744 | 0℃ | 60~95 | 60~95 | 3.3~4.1 | 最优冷凝压力条件下系统运行压力可降低4.2%,COP提高1.7% |
Sun等[ | 制备物料干燥、印刷等场景需要的65~100℃热水 | R1270/正己烷 | 0~10 | 75~100 | 65~100 | 2.2~6.1 | 达到与同等情况CO2跨临界循环相近COP值,同时显著降低排气压力 | |
补液/补气增焓技术 | 杨文军等[ | 低环境温度(-15℃以下)供暖 | R410a | -25 | 60~80 | 85~105 | — | 补液降低排气温度20% 左右 |
d’Angelo等[ | 低环境温度供暖 | R600a/R290 | -23 | 55 | 78 | 1.69 | COP较无补气装置提升了24%左右,排气温度降低了15%左右 | |
喷射技术 | Sarkar[ | 低环境温度供暖 | R744 | -45~0 | 30~60 | 30~105 | 2.2~11.2 | 㶲效率最多可提高9%,最优排气压力最多可降低10% |
Qin等[ | 制备60℃生活 热水 | R744 | 5 | 85 | 80 | 4.27 | 与无喷射装置循环相比,㶲效率提高22% | |
多级蒸发冷凝技术 | Chua等[ | 热泵干燥机 | R22 | 2~10 | 60 | 50~58 | 2.2~3.0 | 与单级蒸发器系统相比,回收的热量最多可增加35% |
李小燕等[ | 制备60℃以上生活热水 | R744 | 0~15 | 70~110 | 55~110 | 3.5~4.8 | 较常规CO2热泵系统COP提高了9.88%,不可逆损失降低了24.50% | |
串联多级压缩技术 | Redón等[ | 热源与散热器温差超过70℃ | R290 | -20~0 | 65 | 65~85 | 2.47~3.62 | 二级系统COP可以提高30%,且不良的二级系统会损失6%~10%的COP |
Kosmadakis等[ | 产热温度在120℃以上的高温热泵 | R1234ze(Z) | 30~90 | 100~150 | 10~120 | 1.5~6 | 在变化范围内COP提升程度为20%~95%;同时温升程度在50~60℃范围内二级循环投资回报周期最短 | |
复叠式压缩技术 | 神户制钢[ | 产生165℃工业用高温蒸汽 | R245fa/R718 | 30~60 | 150~180 | 90~160 | 1.6~2.5 | 达到与工业燃气锅炉相同水平的蒸汽产生能力;较单级循环COP提升24%以上 |
Wang等[ | 严寒条件供应85℃热水的控制策略优化 | R134a/R744 | -30~-5 | 95 | 100~125 | 1.7~2.0 | 成功收敛到校准的最佳值中间温度,稳定误差为0.8%,相比于使用参考控制策略的热泵循环,COP平均提高了10.6% | |
涡流管技术 | Liu等[ | CO2热泵供暖 | R744 | -10~10 | 100 | 90~110 | 1.5~2.6 | 一定条件下较无涡流管循环,COP提高了33.7% |
Zhao等[ | CO2热泵供应生活热水 | R744 | -15~3 | 90 | 87~105 | 2.9~3.9 | 该循环的COP可提高至3.9,与传统CO2热泵循环相比可提高16.8% |
表6 循环优化手段对比表
优化技术 | 研究者 | 系统运行场景 | 工质 | 蒸发温度 /℃ | 冷凝(气冷) 温度①/℃ | 温升程度 /℃ | COP | 系统性能提升情况 |
---|---|---|---|---|---|---|---|---|
回热技术 | 王辉等[ | 利用油田低温余热制备55℃热水 | R744 | 0℃ | 60~95 | 60~95 | 3.3~4.1 | 最优冷凝压力条件下系统运行压力可降低4.2%,COP提高1.7% |
Sun等[ | 制备物料干燥、印刷等场景需要的65~100℃热水 | R1270/正己烷 | 0~10 | 75~100 | 65~100 | 2.2~6.1 | 达到与同等情况CO2跨临界循环相近COP值,同时显著降低排气压力 | |
补液/补气增焓技术 | 杨文军等[ | 低环境温度(-15℃以下)供暖 | R410a | -25 | 60~80 | 85~105 | — | 补液降低排气温度20% 左右 |
d’Angelo等[ | 低环境温度供暖 | R600a/R290 | -23 | 55 | 78 | 1.69 | COP较无补气装置提升了24%左右,排气温度降低了15%左右 | |
喷射技术 | Sarkar[ | 低环境温度供暖 | R744 | -45~0 | 30~60 | 30~105 | 2.2~11.2 | 㶲效率最多可提高9%,最优排气压力最多可降低10% |
Qin等[ | 制备60℃生活 热水 | R744 | 5 | 85 | 80 | 4.27 | 与无喷射装置循环相比,㶲效率提高22% | |
多级蒸发冷凝技术 | Chua等[ | 热泵干燥机 | R22 | 2~10 | 60 | 50~58 | 2.2~3.0 | 与单级蒸发器系统相比,回收的热量最多可增加35% |
李小燕等[ | 制备60℃以上生活热水 | R744 | 0~15 | 70~110 | 55~110 | 3.5~4.8 | 较常规CO2热泵系统COP提高了9.88%,不可逆损失降低了24.50% | |
串联多级压缩技术 | Redón等[ | 热源与散热器温差超过70℃ | R290 | -20~0 | 65 | 65~85 | 2.47~3.62 | 二级系统COP可以提高30%,且不良的二级系统会损失6%~10%的COP |
Kosmadakis等[ | 产热温度在120℃以上的高温热泵 | R1234ze(Z) | 30~90 | 100~150 | 10~120 | 1.5~6 | 在变化范围内COP提升程度为20%~95%;同时温升程度在50~60℃范围内二级循环投资回报周期最短 | |
复叠式压缩技术 | 神户制钢[ | 产生165℃工业用高温蒸汽 | R245fa/R718 | 30~60 | 150~180 | 90~160 | 1.6~2.5 | 达到与工业燃气锅炉相同水平的蒸汽产生能力;较单级循环COP提升24%以上 |
Wang等[ | 严寒条件供应85℃热水的控制策略优化 | R134a/R744 | -30~-5 | 95 | 100~125 | 1.7~2.0 | 成功收敛到校准的最佳值中间温度,稳定误差为0.8%,相比于使用参考控制策略的热泵循环,COP平均提高了10.6% | |
涡流管技术 | Liu等[ | CO2热泵供暖 | R744 | -10~10 | 100 | 90~110 | 1.5~2.6 | 一定条件下较无涡流管循环,COP提高了33.7% |
Zhao等[ | CO2热泵供应生活热水 | R744 | -15~3 | 90 | 87~105 | 2.9~3.9 | 该循环的COP可提高至3.9,与传统CO2热泵循环相比可提高16.8% |
项目 | 神户制钢SGH165[ | 中科院广州能源研究所高温热泵机组[ | 欧适能 IWWDS-ER3c4[ | 上海交通大学空气源 热泵锅炉系统[ | 大金二级压缩VRV热泵空调[ |
---|---|---|---|---|---|
工质 | R245fa/R718 | R245fa | R245fa | R410A/R245fa/R718 | R410A |
优化技术 | 复叠式压缩技术 | 补气增焓技术 | 补气增焓技术 | 复叠式压缩技术 | 串联二级压缩技术 |
温升范围 | 50℃→165℃ | 40℃→120℃ | 50℃→120℃ | 15℃→120℃ | -10℃→40℃ |
性能系数 | 2.0 | 2.8 | 3.0 | 1.4 | 3.15 |
最大制热功率/kW | 660 | 360 | 750 | 1351 | 63 |
样机图片 |
表7 大温升系统示范产品信息
项目 | 神户制钢SGH165[ | 中科院广州能源研究所高温热泵机组[ | 欧适能 IWWDS-ER3c4[ | 上海交通大学空气源 热泵锅炉系统[ | 大金二级压缩VRV热泵空调[ |
---|---|---|---|---|---|
工质 | R245fa/R718 | R245fa | R245fa | R410A/R245fa/R718 | R410A |
优化技术 | 复叠式压缩技术 | 补气增焓技术 | 补气增焓技术 | 复叠式压缩技术 | 串联二级压缩技术 |
温升范围 | 50℃→165℃ | 40℃→120℃ | 50℃→120℃ | 15℃→120℃ | -10℃→40℃ |
性能系数 | 2.0 | 2.8 | 3.0 | 1.4 | 3.15 |
最大制热功率/kW | 660 | 360 | 750 | 1351 | 63 |
样机图片 |
1 | British Petroleum Company. Statistical review of world energy[EB/OL]. (2022-08-31) [2022-06-01]. . |
2 | BUREAU N S. National statistical yearbook 2021[EB/OL]. (2022-08-31) [2022-05-19]. . |
3 | YAN Hongzhi, HU Bin, WANG Ruzhu. Air-source heat pump for distributed steam generation: A new and sustainable solution to replace coal-fired boilers in China[J]. Advanced Sustainable Systems, 2020, 4(11): 2000118. |
4 | LIU Zijian, SUN Shoujun, GUO Hao, et al. Experimental study on the concentration shift characteristics in a single-stage recuperative heat pump with large temperature lift[J]. Applied Thermal Engineering, 2022, 210: 118358. |
5 | BERTSCH Stefan S, GROLL Eckhard A. Two-stage air-source heat pump for residential heating and cooling applications in northern U.S. climates[J]. International Journal of Refrigeration, 2008, 31(7): 1282-1292. |
6 | SUN Shoujun, GUO Hao, GONG Maoqiong. Thermodynamic analysis of single-stage compression air-source heat pumps with different recuperation ways for large temperature lift[J]. International Journal of Refrigeration, 2019, 108: 91-102. |
7 | ARPAGAUS Cordin, BLESS Frédéric, UHLMANN Michael, et al. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials[J]. Energy, 2018, 152: 985-1010. |
8 | SUN Shoujun, LIU Zijian, SUN Yuwei, et al. Performance evaluation of a novel mixed-refrigerant recuperative heat pump with a large temperature lift for space heating[J]. Applied Thermal Engineering, 2023, 221: 119828. |
9 | PENG Zhaorui, WANG Guanbang, ZHANG Xinrong. Thermodynamic analysis of novel heat pump cycles for drying process with large temperature lift[J]. International Journal of Energy Research, 2019, 43(8): 3201-3222. |
10 | JIANG Jiatong, HU Bin, WANG Ruzhu, et al. A review and perspective on industry high-temperature heat pumps[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112106. |
11 | CHEN Jiaheng, CHEN Qi, QIN Xiang, et al. Energy, exergy, economic and environmental analyses and optimization of a novel vapor injection autocascade heat pump for high-temperature water heating[J]. Energy Conversion and Management, 2022, 267: 115909. |
12 | SCHLOSSER F, JESPER M, VOGELSANG J, et al. Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110219. |
13 | CHUA K J, CHOU S K, YANG W M. Advances in heat pump systems: A review[J]. Applied Energy, 2010, 87(12): 3611-3624. |
14 | World Meteorological Organization. Scientific assessment of ozone depletion: 2018, global ozone research and monitoring Project-Report [R/OL]. Geneva, Switzerland: WMO, 2018. . |
15 | LEMMON E W, HUBER M L, MCLINDEN M O. Reference fluid thermodynamic and transport properties-REFPROP Version 8.0[J]. NIST standard reference database, 2007, 23. |
16 | WU Di, JIANG Jiatong, HU Bin, et al. Experimental investigation on the performance of a very high temperature heat pump with water refrigerant[J]. Energy, 2020, 190: 116427. |
17 | 沈九兵, 何志龙, 邢子文. 采用喷水螺杆式水蒸气压缩机的高温热泵设计及性能分析[J]. 制冷与空调, 2014, 14(2): 95-98. |
SHEN Jiubing, HE Zhilong, XING Ziwen. Design and performance analysis of high temperature heat pump using water-jet screw type steam compressor[J]. Refrigeration and Air-Conditioning, 2014, 14(2): 95-98. | |
18 | 于振国, 覃业雄, 张孙阳. 一种高能效超低温空气源CO2热泵: CN107101407A[P]. 2017-08-29. |
Yu Zhenguo, Qin Yexiong, Zhang Sunyang. High-energy-efficiency ultralow-temperature CO2 air-source heat pump: CN107101407A[P]. 2017-08-29. | |
19 | WANG Yibiao, DONG Junqi, JIA Shiwei, et al. Experimental comparison of R744 and R134a heat pump systems for electric vehicle application[J]. International Journal of Refrigeration, 2021, 121: 10-22. |
20 | IVANOVSKI Igor, GORICANEC Darko, SALAMUNIC Julijan Jan, et al. The Comparison between Two High-Temperature Heat-Pumps for the Production of Sanitary Water[J]. Strojniški Vestnik: Journal of Mechanical Engineering, 2018: 64. |
21 | ZHAO Zhaorui, XING Ziwen, HOU Feng, et al. Theoretical and experimental investigation of a novel high temperature heat pump system for recovering heat from refrigeration system[J]. Applied Thermal Engineering, 2016, 107: 758-767. |
22 | LIU Cichong, ZHANG Yun, GAO Tianyuan, et al. Performance evaluation of propane heat pump system for electric vehicle in cold climate[J]. International Journal of Refrigeration, 2018, 95: 51-60. |
23 | NAWAZ Kashif, SHEN Bo, ELATAR Ahmed, et al. R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters[J]. Applied Thermal Engineering, 2017, 127: 870-883. |
24 | 潘利生, 王怀信, 陈晨, 等. 两种中高温热泵自然工质实验研究[J]. 太阳能学报, 2012, 33(5): 827-831. |
PAN Lisheng, WANG Huaixin, CHEN Chen, et al. Experimental research on two natural working fluids of moderately high temperature heat pump[J]. Acta Energiae Solaris Sinica, 2012, 33(5): 827-831. | |
25 | BAMIGBETAN Opeyemi, EIKEVIK Trygve M, Petter NEKSÅ, et al. Theoretical analysis of suitable fluids for high temperature heat pumps up to 125℃ heat delivery[J]. International Journal of Refrigeration, 2018, 92: 185-195. |
26 | ZHANG Xuedong, XU Huimin. Experimental performance of moderately high temperature heat pump with working fluid R1234ze(Z)[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4): 1535-1545. |
27 | FUKUDA Sho, KONDOU Chieko, TAKATA Nobuo, et al. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps[J]. International Journal of Refrigeration, 2014, 40: 161-173. |
28 | COLOMBO Luigi Pietro Maria, LUCCHINI Andrea, MOLINAROLI Luca. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump[J]. International Journal of Refrigeration, 2020, 115: 18-27. |
29 | KONDOU Chieko, KOYAMA Shigeru. Thermodynamic assessment of high-temperature heat pumps using Low-GWP HFO refrigerants for heat recovery[J]. International Journal of Refrigeration, 2015, 53: 126-141. |
30 | SULAIMAN Adam Y, COTTER Donal F, LE Khoa Xuan, et al. Thermodynamic analysis of subcritical High-Temperature heat pump using low GWP Refrigerants: A theoretical evaluation[J]. Energy Conversion and Management, 2022, 268: 116034. |
31 | ARPAGAUS Cordin, BERTSCH Stefan S. Experimental results of HFO/HCFO refrigerants in a laboratory scale HTHP with up to 150℃ supply temperature[C]//2nd Conference on High Temperature Heat Pumps. 2019: 1-9. |
32 | YıLDıZ A, YıLDıRıM R. Investigation of using R134a, R1234yf and R513A as refrigerant in a heat pump[J].International Journal of Environmental Science and Technology, 2021, 18(5): 1201-1210. |
33 | ALKAN Alpaslan, KOLIP Ahmet, HOSOZ Murat. Experimental energy and exergy performance of an automotive heat pump using R1234yf[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(2): 787-799. |
34 | Carlos MATEU-ROYO, Adrián MOTA-BABILONI, Joaquín NAVARRO-ESBRÍ, et al. Multi-objective optimization of a novel reversible high-temperature heat pump-organic rankine cycle (HTHP-ORC) for industrial low-grade waste heat recovery[J]. Energy Conversion and Management, 2019, 197: 111908. |
35 | ALHAMID Muhammad Idrus, AISYAH Nyayu, NASRUDDIN Nasruddin, et al. Thermodynamic and environmental analysis of a high-temperature heat pump using HCFO-1224yd(Z) and HCFO-1233zd(E)[J]. International Journal of Technology, 2019, 10(8): 1585. |
36 | LI G. Performance assessment of low global warming potential working fluids R1233zd(E) and R1224yd(Z) for low pressure centrifugal chiller applications[J]. Journal of Engineering Thermophysics, 2021, 30(2): 270-292. |
37 | Carlos MATEU-ROYO, Joaquín NAVARRO-ESBRÍ, Adrián MOTA-BABILONI, et al. Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336mzz(Z)[J]. Applied Thermal Engineering, 2019, 152: 762-777. |
38 | Vedat ORUÇ, DEVECIOĞLU Atilla G. Experimental investigation on the low-GWP HFC/HFO blends R454A and R454C in a R404A refrigeration system[J]. International Journal of Refrigeration, 2021, 128: 242-251. |
39 | DEVECIOĞLU Atilla G, Vedat ORUÇ. Drop-in assessment of plug-in R404A refrigeration equipment using low-global warming potential mixtures[J]. International Journal of Low-Carbon Technologies, 2022, 17: 991-999. |
40 | DEVECIOĞLU Atilla G, Vedat ORUÇ. An analysis on the comparison of low-GWP refrigerants to alternatively use in mobile air-conditioning systems[J]. Thermal Science and Engineering Progress, 2017, 1: 1-5. |
41 | 闫伟国, 蔡晓斌, 高博, 等. R454C制冷剂应用于涡旋式压缩机分析[J]. 制冷与空调, 2023, 23(2): 94-96, 101. |
YAN Weiguo, CAI Xiaobin, GAO Bo, et al. Application of R454C refrigerant to scroll compressor[J]. Refrigeration and Air-Conditioning, 2023, 23(2): 94-96, 101. | |
42 | 范晓伟, 欧阳怀瀑, 巨福军, 等. R744/R600a热泵热水器系统性能实验研究[J]. 热科学与技术, 2019, 18(5): 362-366. |
FAN Xiaowei, OUYANG Huaipu, JU Fujun, et al. Experimental study on the performance of heat pump system using R744/R600a mixtures as refrigerants[J]. Journal of Thermal Science and Technology, 2019, 18(5): 362-366. | |
43 | DEVECIOĞLU Atilla G, Vedat ORUÇ. On the satisfaction of EU F-Gas regulation using R455A as an alternative to R404A in refrigeration systems[J]. Materials Today: Proceedings, 2022, 52: 1865-1869. |
44 | WU Di, HU Bin, WANG R Z. Vapor compression heat pumps with pure Low-GWP refrigerants[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110571. |
45 | Francisco MOLÉS, Joaquín NAVARRO-ESBRÍ, PERIS Bernardo, et al. Theoretical energy performance evaluation of different single stage vapour compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids[J]. International Journal of Refrigeration, 2014, 44: 141-150. |
46 | Carlos MATEU-ROYO, Joaquín NAVARRO-ESBRÍ, Adrián MOTA-BABILONI, et al. Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery[J]. Applied Energy, 2019, 253: 113504. |
47 | MATTIAS Nilsson, HARALD Nes Rislå, KONTOMARIS K. Measured performance of a novel high temperature heat pump with HFO-1336mzz(Z) as the working fluid[C]//12th IEA Heat Pump Conference. 2017: 1-10. |
48 | ZHANG Yilin, WANG Wen. Friction loss and wear in a meso scale wankel compressor[J]. Journal of Fluids Engineering, 2013, 135(8): 081103. |
49 | WANG Le, TANG Bin, ZHAO Yuan yang. A novel friction model basing on journal bearing theory for reciprocating compressor[J]. Applied Mechanics and Materials, 2013, 456: 320-323. |
50 | GU Huaduo, ZHOU Xiaoyu, CHEN Yaping, et al. Analysis, modeling and simulations of an innovative sliding vane rotary compressor with a rotating cylinder[J]. Energy Conversion and Management, 2021, 230: 113822. |
51 | SU Wengui, HAN Xiaogang, GENG Kuihua, et al. The comparison between swing-constrain reciprocating piston oil-free air compressor and traditional compressor[J]. Applied Mechanics and Materials, 2014, 551: 108-114. |
52 | PEI Tonghao, LI Dawei, LIU Jiayun, et al. Review of bearingless synchronous motors: Principle and topology[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3489-3502. |
53 | TSAI Nan-Chyuan, CHIANG Chaowen. High-frequency linear compressor and lateral position regulation[J]. IEEE Transactions on Control Systems Technology, 2012, 20(1): 127-138. |
54 | 周黎民, 贺艳晖, 周亮. 磁悬浮轴承热泵压缩机设计与应用研究[J]. 电机与控制应用, 2022, 49(5): 54-59. |
ZHOU Limin, HE Yanhui, ZHOU Liang. Design and application of heat pump compressor with magnetic bearing[J]. Electric Machines & Control Application, 2022, 49(5): 54-59. | |
55 | 格力电器发布“最节能”磁悬浮变频离心机[J]. 电器, 2014(4): 67. |
Gree Electric released the “most energy-saving” magnetic suspension frequency conversion centrifuge[J]. China Appliance, 2014(4): 67. | |
56 | WANG Xudong, HWANG Yunho, RADERMACHER Reinhard. Investigation of potential benefits of compressor cooling[J]. Applied Thermal Engineering, 2008, 28(14/15): 1791-1797. |
57 | YANG Chuanlei, LI Yang, WANG Yinyan, et al. Performance prediction of a centrifugal compressor with cooling structure[C]//AIP Conference Proceedings", "MATERIALS SCIENCE, ENERGY TECHNOLOGY AND POWER ENGINEERING Ⅲ (MEP 2019. Hohhot, China. AIP Publishing, 2019: 020002. |
58 | MOSTAFA MOOSANIA Seyed, ZHENG Xinqian. Performance improvement of a high pressure ratio centrifugal compressor by integrated cooling[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(12): 2233-2240. |
59 | YAN Gang, JIA Qinglei, BAI Tao. Experimental investigation on vapor injection heat pump with a newly designed twin rotary variable speed compressor for cold regions[J]. International Journal of Refrigeration, 2016, 62: 232-241. |
60 | LIU Fang, GROLL Eckhard A, REN Jianxing. Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system[J]. Applied Thermal Engineering, 2016, 98: 1061-1069. |
61 | ADHIKARI R S, ASTE N, MANFREN M, et al. Energy savings through variable speed compressor heat pump systems[J]. Energy Procedia, 2012, 14: 1337-1342. |
62 | 胡煜刚, 贺宇辰. 一种热力膨胀阀: CN203177551U[P]. 2013-09-04. |
Hu Yugang, He Yuchen. Thermal expansion valve: CN203177551U[P]. 2013-09-04. | |
63 | ZHENG Zhengsong, YAO Zhibin, YAO Jingen, et al. Thermal expansion valve: US11326816[P]. 2022-05-10. |
64 | 叶锋. 一种热力膨胀阀: CN108731314A[P]. 2018-11-02. |
YE Feng. A thermal expansion valve: CN108731314A[P]. 2018-11-02. | |
65 | JEONG Sangkwon. Thermal expansion valve and cryocooling system including the expansion valve: KR102102958B1[P]. 2010-02-10. |
66 | ZHANG Rongrong, STANKE Edwin J, ZHANG Genxiang, et al. Benefits investigation of electronic expansion valve in electric vehicle thermal system as compared to thermal expansion valve with shut-off valve[J]. International Journal of Refrigeration, 2019, 100: 404-413. |
67 | TESFAY Mehari, ALSALEEM Fadi, ARUNASALAM Parthiban, et al. Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization[J]. Building and Environment, 2018, 133: 151-160. |
68 | DING Xudong, WANG Jing, DUAN Peiyong, et al. A novel on-line auto-tuning PI controller for the superheat of evaporator with electronic expansion valve[C]//2017 Chinese Automation Congress (CAC). October 20-22, 2017, Jinan, China. IEEE, 2018: 7513-7517. |
69 | BIRKELUND Michael. Electronic expansion valve and methods for calibrating an electronic expansion valve: US10197314[P]. 2019-02-05. |
70 | WEI Xianrang. Electronic expansion valve: US11261974[P]. 2022-03-01. |
71 | KUNDU Arijit, KUMAR Ravi, GUPTA Akhilesh. Evaporative heat transfer of R134a and R407C inside a smooth tube with different inclinations[J]. International Journal of Heat and Mass Transfer, 2014, 76: 523-533. |
72 | 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78. |
SHAN Siyu, TAN Hongbo. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers[J]. CIESC Journal, 2019, 70(S1): 69-78. | |
73 | 刘业凤, 沈庭伟, 孙伟, 等. 一种内管带螺纹的CO2气冷器换热性能[J]. 化学工程, 2022, 50(3): 20-24, 46. |
LIU Yefeng, SHEN Tingwei, SUN Wei, et al. Heat transfer performance of a CO2 gas with a threaded inner tube[J]. Chemical Engineering, 2022, 50(3): 20-24, 46. | |
74 | SAYED AHMED Sayed Ahmed E, MESALHY Osama M, ABDELATIEF Mohamed A. Flow and heat transfer enhancement in tube heat exchangers[J]. Heat and Mass Transfer, 2015, 51(11): 1607-1630. |
75 | 姜林林, 蒋金周, 沈志华. R290在微细圆管内流动沸腾摩擦压降特性研究[J]. 热能动力工程, 2021, 36(12): 88-93. |
JIANG Linlin, JIANG Jinzhou, SHEN Zhihua. Study on flow boiling frictional pressure drop characteristics of R290 in a microtubule[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(12): 88-93. | |
76 | UDDIN Rony Rajib, ADAM Gladen. Numerical modeling of a photovoltaic/microchannel direct-expansion evaporator for a CO2 heat pump[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(2): 021022. |
77 | 刘家瑞, 赵巍, 张华, 等. 板壳式换热器板程流量分布特性的模拟与优化[J]. 热能动力工程, 2016, 31(5): 7-15, 146-147. |
LIU Jiarui, ZHAO Wei, ZHANG Hua, et al. Simulation and optimization of plate-side flow distribution characteristics of plate-shell heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(5): 7-15, 146-147. | |
78 | SUN Haiyang, QIAN Caifu. Experimental study of pressure drop and heat transfer of heat exchangers with LASH baffles[J]. Advanced Materials Research, 2011, 199/200: 1523-1527. |
79 | 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(S1): 10-15. |
GE Yang, JIANG Weiting. The research progress and application of the micro-channel heat exchanger[J]. China Industrial Economics, 2016, 35(S1): 10-15. | |
80 | Mohammad HARUN-OR-RASHID, JEONG Ji Hwan. Replacement of present conventional condenser of household refrigerator by louver fin micro-channel condenser[J]. Arabian Journal for Science and Engineering, 2019, 44(2): 753-761. |
81 | 尹茜, 潘李奎. 微通道换热器在风冷冷热水热泵中的性能研究[J]. 流体机械, 2017, 45(8): 84-86, 72. |
YIN Qian, PAN Likui. Experimental study of air cooled heat pump with a micro-channel heat exchanger[J]. Fluid Machinery, 2017, 45(8): 84-86, 72. | |
82 | 于改革, 陈永东, 李雪, 等. 印刷电路板式换热器传热与流动研究进展[J]. 流体机械, 2017, 45(12): 73-79. |
YU Gaige, CHEN Yongdong, LI Xue, et al. Research progress in heat transfer and fluid flow of printed circuit heat exchanger[J]. Fluid Machinery, 2017, 45(12): 73-79. | |
83 | FUGMANN Hannes, LAURENZ Eric, SCHNABEL Lena. Wire structure heat exchangers—New designs for efficient heat transfer[J]. Energies, 2017, 10(9): 1341. |
84 | 王辉, 王国辉. 基于窄点温差的CO2回热式热泵系统性能分析[J]. 油气田地面工程, 2018, 37(10): 16-21. |
WANG Hui, WANG Guohui. System performance analysis of CO2 regenerative heat pumps based on pinch point temperature difference[J]. Oil-Gasfield Surface Engineering, 2018, 37(10): 16-21. | |
85 | SUN Shoujun, GUO Hao, LU Ding, et al. Performance of a single-stage recuperative high-temperature air source heat pump[J]. Applied Thermal Engineering, 2021, 193: 116969. |
86 | XU Xing, HWANG Yunho, RADERMACHER Reinhard. Refrigerant injection for heat pumping/air conditioning systems: Literature review and challenges discussions[J]. International Journal of Refrigeration, 2011, 34(2): 402-415. |
87 | 杨文军, 邓志扬, 李敬泉. 低环境温度工况下喷液和喷气增焓空气源热泵热水机排气温度控制分析[J]. 制冷与空调, 2017, 17(10): 70-73. |
YANG Wenjun, DENG Zhiyang, LI Jingquan. Analysis on discharge temperature control of air source heat pump water heater with liquid injection and enhanced vapor injection under low ambient temperature condition[J]. Refrigeration and Air-Conditioning, 2017, 17(10): 70-73. | |
88 | D'ANGELO José Vicente Hallak, AUTE Vikrant, RADERMACHER Reinhard. Performance evaluation of a vapor injection refrigeration system using mixture refrigerant R290/R600a[J]. International Journal of Refrigeration, 2016, 65: 194-208. |
89 | 吴孟霞, 王汉治, 李帅旗, 等. 高温CO2热泵的超临界喷气增焓性能[J]. 化工进展, 2020, 39(5): 1667-1673 |
WU Mengxia, WANG Hanzhi, LI Shuaiqi, et al. Performance research on high temperature CO2 heat pump with supercritical enhanced gas injection[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1667-1673. | |
90 | SARKAR Jahar. Ejector enhanced vapor compression refrigeration and heat pump systems—A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(9): 6647-6659. |
91 | SARKAR Jahar. Optimization of ejector-expansion transcritical CO2 heat pump cycle[J]. Energy, 2008, 33(9): 1399-1406. |
92 | QIN Xiang, ZHANG Yuxiang, WANG Dingbiao, et al. System development and simulation investigation on a novel compression/ejection transcritical CO2 heat pump system for simultaneous cooling and heating[J]. Energy Conversion and Management, 2022, 259: 115579. |
93 | CHUA K J, CHOU S K. A modular approach to study the performance of a two-stage heat pump system for drying[J]. Applied Thermal Engineering, 2005, 25(8/9): 1363-1379. |
94 | 李小燕, 代宝民, 滑雪, 等. 基于引射器的双温蒸发CO2热泵系统性能分析[J]. 制冷学报, 2022, 43(2): 54-61. |
LI Xiaoyan, DAI Baomin, HUA Xue, et al. Performance analysis of CO2 dual-temperature evaporation heat pump system with an ejector[J]. Journal of Refrigeration, 2022, 43(2): 54-61. | |
95 | REDÓN A, NAVARRO-PERIS E, PITARCH M, et al. Analysis and optimization of subcritical two-stage vapor injection heat pump systems[J]. Applied Energy, 2014, 124: 231-240. |
96 | KOSMADAKIS George, ARPAGAUS Cordin, NEOFYTOU Panagiotis, et al. Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150℃[J]. Energy Conversion and Management, 2020, 226: 113488. |
97 | HU Bin, WU Di, WANG L W, et al. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Frontiers in Energy, 2017, 11(4): 493-502. |
98 | KAIDA T, SAKURABA I, HASHIMOTO K, et al. Experimental performance evaluation of heat pump-based steam supply system[J]. IOP Conference Series: Materials Science and Engineering, 2015, 90: 012076. |
99 | LI Shuaiqi, HE Shihui, HUANG Chong, et al. Performance Analysis and Optimization of Heat Pump Steam Generator System Based on Exergy Analysis[C]//YAN Jinyue. Energy proceedings, Bochum: ICAE 2022, 2022: 1-10. |
100 | WANG Wenyi, ZHOU Qun, TIAN Guanyu, et al. The intermediate temperature optimization for cascade refrigeration system and air source heat pump via extreme seeking control[J]. International Journal of Refrigeration, 2020, 117: 150-162. |
101 | HU Zhuohuan, LI Rui, YANG Xin, et al. Energy separation for Ranque-Hilsch vortex tube: A short review[J]. Thermal Science and Engineering Progress, 2020, 19: 100559. |
102 | LIU Yefeng, SUN Ying, TANG Danping. Analysis of a CO2 transcritical refrigeration cycle with a vortex tube expansion[J]. Sustainability, 2019, 11(7): 2021. |
103 | ZHAO Jiahua, NING Jinghong. Performance analysis on CO2 heat pump cycle with a vortex tube[C]//3rd International Conference on Smart Materials and Nanotechnology in Engineering (SMNE 2016). Sanya: DESTECH Publicat Inc, 2016: 183-88. |
104 | 李帅旗, 何世辉, 宋文吉, 等. 基于蒸汽压缩技术的热泵蒸汽系统热力性能分析[J]. 化工进展, 2020, 39(9): 3583-3589. |
LI Shuaiqi, HE Shihui, SONG Wenji, et al. Performance analysis of heat pump steam system based on vapor compression technology[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3583-3589. | |
105 | OCHSNER K. High temperature heat pumps for waste heat recovery[C]//8th EHPA European Heat Pump Forum. 2015: 1-10. |
106 | MASOODI Faiz, HASSAN M M, Mohd Aasif ALI, et al. Energy analysis and design comparison of VRV system of a building with split air-conditioning system[J]. Invertis Journal of Renewable Energy, 2016, 6(3): 137. |
[1] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[2] | 苏茜, 邓翔天, 刘振兴. 油气水三相流相含率超声测试模型优化[J]. 化工进展, 2024, 43(2): 791-799. |
[3] | 单良, 华夏杰, 牛玉风, 赵腾飞, 洪波, 孔明. 面向光场火焰温度场重建的特征提取优化方法[J]. 化工进展, 2024, 43(2): 823-829. |
[4] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[5] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
[6] | 王敬翰, 吕杰, 赵丁, 林文野, 宋文吉, 冯自平. 基于BP神经网络的电动汽车动力电池产热估计[J]. 化工进展, 2024, 43(1): 400-406. |
[7] | 王博, 张长安, 赵利民, 袁俊, 宋永一. 基于掺硼金刚石电极的工业废水处理研究进展[J]. 化工进展, 2024, 43(1): 501-513. |
[8] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[9] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[10] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[11] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[12] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[13] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[14] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[15] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |