化工进展 ›› 2024, Vol. 43 ›› Issue (1): 198-214.DOI: 10.16085/j.issn.1000-6613.2023-1489
• 专栏:化工过程强化 • 上一篇
容凡丁1(), 丁泽相1, 曹义风1,2(), 陈俐吭1,2, 杨柳1,2, 申福星1,2, 杨启炜1,2, 鲍宗必1,2()
收稿日期:
2023-08-28
修回日期:
2023-12-01
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
曹义风,鲍宗必
作者简介:
容凡丁(1998—),女,博士研究生,研究方向为萃取分离。E-mail:12228027@zju.edu.cn。
基金资助:
RONG Fanding1(), DING Zexiang1, CAO Yifeng1,2(), CHEN Lihang1,2, YANG Liu1,2, SHEN Fuxing1,2, YANG Qiwei1,2, BAO Zongbi1,2()
Received:
2023-08-28
Revised:
2023-12-01
Online:
2024-01-20
Published:
2024-02-05
Contact:
CAO Yifeng, BAO Zongbi
摘要:
结构相似物的分离是物耗和能耗最集中的化工过程之一。对于具有不饱和键差异的化合物而言,它们的物化性质极为相近,高效分离极具挑战。离子液体因其特殊的理化性质、结构可设计以及多重分子间相互作用位点等特点而广泛应用于不饱和键差异化合物的分子辨识分离。本文综述了离子液体强化不饱和键差异化合物分离的研究进展,重点介绍了常温常压下为气态的低碳烃、液态的中等碳链烃及固态的天然活性同系物等代表性体系的分离,突出了离子液体分离不饱和键差异化合物的构效关系、分离机理及分离工艺流程评价,并展望了离子液体强化不饱和键差异化合物分离的未来方向。
中图分类号:
容凡丁, 丁泽相, 曹义风, 陈俐吭, 杨柳, 申福星, 杨启炜, 鲍宗必. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214.
RONG Fanding, DING Zexiang, CAO Yifeng, CHEN Lihang, YANG Liu, SHEN Fuxing, YANG Qiwei, BAO Zongbi. Progress in enhanced separation of compounds differing in unsaturated bonds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 198-214.
离子液体 | 亨利系数/atm | ||||
---|---|---|---|---|---|
乙烷 | 乙烯 | 丙烷 | 丙烯 | 乙炔 | |
[P4444][TMPP][ | 28.6 | 37.5 | 9.9 | — | — |
[P66614][TMPP][ | 18.8 | 25.9 | 6.3 | 7.4 | — |
[P8111][TMPP][ | 27.8 | 38.9 | 9.6 | — | — |
[BMIM][PF6][ | 331 ± 78 | 187 ± 23 | 190 ± 24 | 74.0 ± 3.5 | 22.2 ± 0.2 |
[BMIM][BF4][ | 416±64 | 263 ± 24 | 245 ± 22 | 88.2 ± 2.9 | 16.7 ± 0.3 |
[EMIM][CF3SO3][ | 357 ± 46 | 212 ± 16 | 209 ± 15 | 88.0 ± 2.7 | — |
[EMIM][DCA][ | 675 ± 154 | 359 ± 39 | 291 ± 34 | 126 ± 6 | — |
[EMIM][NTf2][ | 169 ± 14 | 118 ± 7 | 92.1 ± 5.7 | 44.3 ± 1.4 | 23.6 ± 0.2 |
表1 烷烃、烯烃、炔烃在不同离子液体中的亨利系数(313K)
离子液体 | 亨利系数/atm | ||||
---|---|---|---|---|---|
乙烷 | 乙烯 | 丙烷 | 丙烯 | 乙炔 | |
[P4444][TMPP][ | 28.6 | 37.5 | 9.9 | — | — |
[P66614][TMPP][ | 18.8 | 25.9 | 6.3 | 7.4 | — |
[P8111][TMPP][ | 27.8 | 38.9 | 9.6 | — | — |
[BMIM][PF6][ | 331 ± 78 | 187 ± 23 | 190 ± 24 | 74.0 ± 3.5 | 22.2 ± 0.2 |
[BMIM][BF4][ | 416±64 | 263 ± 24 | 245 ± 22 | 88.2 ± 2.9 | 16.7 ± 0.3 |
[EMIM][CF3SO3][ | 357 ± 46 | 212 ± 16 | 209 ± 15 | 88.0 ± 2.7 | — |
[EMIM][DCA][ | 675 ± 154 | 359 ± 39 | 291 ± 34 | 126 ± 6 | — |
[EMIM][NTf2][ | 169 ± 14 | 118 ± 7 | 92.1 ± 5.7 | 44.3 ± 1.4 | 23.6 ± 0.2 |
图5 无限稀释条件下[BMIM]+阳离子和不同阴离子组成的离子液体对正己烷/1-己烯、环己烷/环己烯、乙苯/苯乙烯的分离选择性[PF6]-:(a)[101],(b)[102];[BF4]-:(a)[103],(b)[104],(c)[105],(d)[106];[NTf2]-:(a)[106],(b)[107],(c)[108];其他[100]
1 | APONTE J C, DILLON J T, TAROZO Rafael, et al. Separation of unsaturated organic compounds using silver-thiolate chromatographic material[J]. Journal of Chromatography A, 2012, 1240: 83-89. |
2 | He NAN, ZHANG Cheng, VENKATESH Amrit, et al. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases[J]. Journal of Chromatography A, 2017, 1523: 316-320. |
3 | 陈钧, 邱榕, 陈庶来, 等. 银离子络合萃取法及其在分离鱼油活性成分中的应用[J]. 江苏理工大学学报(自然科学版), 2000, 21(6): 18-22. |
CHEN Jun, QIU Rong, CHEN Shulai, et al. Complexation extraction with silver ion and its application in the separation of active components from esterified fish oil[J]. Journal of Jiangsu University of Science and Technology, 2000, 21(6): 18-22. | |
4 | 俞喜娜, 崔益玮, 戴志远, 等. 复合银离子络合技术在脂质分离分析中的应用[J]. 中国食品学报, 2020, 20(1): 311-318. |
YU Xina, CUI Yiwei, DAI Zhiyuan, et al. Application of silver ion-composite complexation technology in lipidomics separation and analysis[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 311-318. | |
5 | SOLODAR J, PETROVICH J P. Behavior of silver(Ⅰ)-olefin complexes in organic media[J]. Inorganic Chemistry, 1971, 10(2): 395-397. |
6 | HAYES Douglas G. Effect of temperature programming on the performance of urea inclusion compound-based free fatty acid fractionation[J]. Journal of the American Oil Chemists’ Society, 2006, 83(3): 253-259. |
7 | 李明, 张连富, 李冀新, 等. 尿素包合法纯化红花籽油中亚油酸[J]. 中国粮油学报, 2005, 20(5): 105-107. |
LI Ming, ZHANG Lianfu, LI Jixin, et al. Purification of linoleic acid from safflower oil with urea adduction fractionation[J]. Chinese Cereals and Oils Association, 2005, 20(5): 105-107. | |
8 | ZHENG Zhenxiao, DAI Zhiyuan, SHEN Qing. Enrichment of polyunsaturated fatty acids from seal oil through urea adduction and the fatty acids change rules during the process[J]. Journal of Food Processing and Preservation, 2018, 42(5): e13593. |
9 | GÁMEZ-MEZA N, NORIEGA-RODRı́GUEZ J A, MEDINA-JUÁREZ L A, et al. Concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil by hydrolysis and urea complexation[J]. Food Research International, 2003, 36(7): 721-727. |
10 | LIU Shucheng, ZHANG Chaohua, HONG Pengzhi, et al. Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: Optimization of process parameters[J]. Journal of Food Engineering, 2006, 73(3): 203-209. |
11 | 孙永利, 卢伟, 肖晓明, 等. C16、C18混合脂肪酸分离技术研究进展[J]. 化工进展, 2014, 33(12): 3139-3143. |
SUN Yongli, LU Wei, XIAO Xiaoming, et al. Development of C16 and C18 fatty acid mixtures separation technology[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3139-3143. | |
12 | LÓPEZ-MARTÍNEZ Juan Carlos, Pablo CAMPRA-MADRID, GUIL-GUERRERO José Luis. γ-Linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization[J]. Journal of Bioscience and Bioengineering, 2004, 97(5): 294-298. |
13 | 郑飞洋, 戴志远, 崔益玮, 等. 金枪鱼油精制及低温结晶法富集甘油三酯型EPA、DHA[J]. 中国食品学报, 2022, 22(3): 147-158. |
ZHENG Feiyang, DAI Zhiyuan, CUI Yiwei, et al. Refinement of tuna oil and enrichment of EPA and DHA as triacylglycerols by low temperature crystallization[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 147-158. | |
14 | 董青, 李敏, 杨亦文, 等. EPA和DHA的分离研究进展[J]. 中国油脂, 2019, 44(1): 15-20. |
DONG Qing, LI Min, YANG Yiwen, et al. Advance in separation of EPA and DHA[J]. China Oils and Fats, 2019, 44(1): 15-20. | |
15 | 杨永辉, 陈雪波, 姜春雨, 等. 化工产品模拟移动床色谱分离优化设计仿真[J]. 计算机仿真, 2018, 35(4): 315-318, 394. |
YANG Yonghui, CHEN Xuebo, JIANG Chunyu, et al. Optimizing design and simulation of simulated moving bed chromatography separation for chemical products[J]. Computer Simulation, 2018, 35(4): 315-318, 394. | |
16 | WEI Feng, ZHAO Yingxian. Separation of capsaicin from capsaicinoids by simulated moving bed chromatography[J]. Journal of Chromatography A, 2008, 1187(1/2): 281-284. |
17 | JUZA Markus, MAZZOTTI Marco, MORBIDELLI Massimo. Simulated moving-bed chromatography and its application to chirotechnology[J]. Trends in Biotechnology, 2000, 18(3): 108-118. |
18 | SEIDEL-MORGENSTERN A, KEßLER L C, KASPEREIT M. New developments in simulated moving bed chromatography[J]. Chemical Engineering & Technology, 2008, 31(6): 826-837. |
19 | KIM Kyung-Min, LEE Ju Weon, KIM Sunhee, et al. Advanced operating strategies to extend the applications of simulated moving bed chromatography[J]. Chemical Engineering & Technology, 2017, 40(12): 2163-2178. |
20 | 梁颖堃, 钱震, 刘宏宇, 等. 模拟移动床分离技术发展及应用[J]. 化工管理, 2020(26): 34-35. |
LIANG Yingkun, QIAN Zhen, LIU Hongyu, et al. Development and application of simulated moving bed separation technology[J]. Chemical Enterprise Management, 2020(26): 34-35. | |
21 | LI Wen, LU Hiep Thuan, DOBLIN Monika S, et al. A novel efficient liquid-liquid solvent extraction process for cannabinoid mimic recovery[J]. Separation and Purification Technology, 2023, 309: 123011. |
22 | BOKHARY A, LEITCH M, LIAO B Q. Liquid-liquid extraction technology for resource recovery: Applications, potential, and perspectives[J]. Journal of Water Process Engineering, 2021, 40: 101762. |
23 | EGOROVA K S, GORDEEV E G, ANANIKOV V P. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chemical Reviews, 2017, 117(10): 7132-7189. |
24 | KE Yuqi, JIN Wenbin, YANG Qiwei, et al. Nanostructured branched-chain carboxylate ionic liquids: Synthesis, characterization, and extraordinary solubility for bioactive molecules[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8983-8991. |
25 | EARLE M J, SEDDON K R. Ionic liquids. Green solvents for the future[J]. Pure and Applied Chemistry, 2000, 72(7): 1391-1398. |
26 | EARLE M J, ESPERANÇA J M S S, GILEA M A, et al. The distillation and volatility of ionic liquids[J]. Nature, 2006, 439(7078): 831-834. |
27 | SEDDON K R. A taste of the future[J]. Nature Materials, 2003, 2(6): 363-365. |
28 | KAUR Gagandeep, KUMAR Harsh, SINGLA Meenu. Diverse applications of ionic liquids: A comprehensive review[J]. Journal of Molecular Liquids, 2022, 351: 118556. |
29 | 吴楠, 吴海虹, 蒋咏文. 手性胍盐离子液体的合成[J]. 有机化学, 2008, 28(1): 104-110. |
WU Nan, WU Haihong JIANG, Yongwen. Synthesis of chiral guanidinium-based ionic liquids[J]. Chinese Journal of Organic Chemistry, 2008, 28(1): 104-110. | |
30 | HILMY Nurfathiah Izzaty Mohd Faridz, YAHYA Wan Zaireen Nisa, KURNIA Kiki Adi. Eutectic ionic liquids as potential electrolytes in dye-sensitized solar cells: Physicochemical and conductivity studies[J]. Journal of Molecular Liquids, 2020, 320: 114381. |
31 | Amani AL-OTHMAN, NANCARROW Paul, TAWALBEH Muhammad, et al. Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(8): 6100-6109. |
32 | SOSNOWSKA Anita, LAUX Edith, KEPPNER Herbert, et al. Relatively high-Seebeck thermoelectric cells containing ionic liquids supplemented by cobalt redox couple[J]. Journal of Molecular Liquids, 2020, 316: 113871. |
33 | POLI Federico, MOMODU Damilola, SPINA Giovanni Emanuele, et al. Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device[J]. Electrochimica Acta, 2020, 338: 135872. |
34 | MA Rui, ZHAO Qin, ZHANG Enhui, et al. Synthesis and evaluation of oil-soluble ionic liquids as multifunctional lubricant additives[J]. Tribology International, 2020, 151: 106446. |
35 | NESSIM M I, ZAKY M T, DEYAB M A. Three new gemini ionic liquids: Synthesis, characterizations and anticorrosion applications[J]. Journal of Molecular Liquids, 2018, 266: 703-710. |
36 | DECAEN Paul, Agnès ROLLAND-SABATÉ, COLOMINES Gaël, et al. Influence of ionic plasticizers on the processing and viscosity of starch melts[J]. Carbohydrate Polymers, 2020, 230: 115591. |
37 | HOWARTH Joshua. Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6 [J]. Tetrahedron Letters, 2000, 41(34): 6627-6629. |
38 | ZHAO Hua, Christopher TOE. “Water-like” ammonium-based ionic liquids for lipase activation and enzymatic polymerization[J]. Process Biochemistry, 2020, 98: 59-64. |
39 | ABARCA Gabriel, GONÇALVES Wellington D G, ALBUQUERQUE Brunno L, et al. Bimetallic RuPd nanoparticles in ionic liquids: Selective catalysts for the hydrogenation of aromatic compounds[J]. New Journal of Chemistry, 2021, 45(1): 98-103. |
40 | 杨启炜, 鲍宗必, 邢华斌, 等. 离子液体萃取分离结构相似化合物研究进展[J]. 化工进展, 2019, 38(1): 91-99. |
YANG Qiwei, BAO Zongbi, XING Huabin, et al. Research progress on the extractive separation of structurally-related compounds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 91-99. | |
41 | ANDERSON J L, DING Jie, WELTON T, et al. Characterizing ionic liquids on the basis of multiple solvation interactions[J]. Journal of the American Chemical Society, 2002, 124(47): 14247-14254. |
42 | GIRAUD G, GORDON C M, DUNKIN I R, et al. The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study[J]. The Journal of Chemical Physics, 2003, 119(1): 464-477. |
43 | CAMPER Dean, BECKER Collin, KOVAL Carl, et al. Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1928-1933. |
44 | LEE Jung Min, PALGUNADI Jelliarko, KIM Jin Hyung, et al. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1812-1816. |
45 | Zhaoxian LYU, ZHOU Teng, CHEN Lifang, et al. Simulation based ionic liquid screening for benzene-cyclohexane extractive separation[J]. Chemical Engineering Science, 2014, 113: 45-53. |
46 | CAO Yifeng, GE Luwei, DONG Xinyan, et al. Separation of hydrophobic compounds differing in a monounsaturated double bond using hydrophilic ionic liquid/water mixtures as extractants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2379-2385. |
47 | CAO Yingying, TAN Xin, ZHAN Guoxiong, et al. Novel process for selective separation of trace artemisitene from artemisinin by ammonium functional ionic liquids[J]. AIChE Journal, 2022, 68(8): e17711. |
48 | KLAMT Andreas, ECKERT Frank, ARLT Wolfgang. COSMO-RS: An alternative to simulation for calculating thermodynamic properties of liquid mixtures[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 101-122. |
49 | PALOMAR Jose, Maria GONZALEZ-MIQUEL, BEDIA Jorge, et al. Task-specific ionic liquids for efficient ammonia absorption[J]. Separation and Purification Technology, 2011, 82: 43-52. |
50 | SALLEH M Z M, HADJ-KALI M K, HASHIM M A, et al. Ionic liquids for the separation of benzene and cyclohexane—COSMO-RS screening and experimental validation[J]. Journal of Molecular Liquids, 2018, 266: 51-61. |
51 | ARLT W. Buchbesprechung: COSMO-RS—from quantum chemistry to fluid phase thermodynamics and drug design. von A. klamt[J]. Chemie Ingenieur Technik, 2007, 79(1/2): 171. |
52 | LI Hao, LI Libo, LIN Rui-Biao, et al. Porous metal-organic frameworks for gas storage and separation: Status and challenges[J]. EnergyChem, 2019, 1(1): 100006. |
53 | XU Shuang, LIU Rushuai, ZHANG Mengyao, et al. Designed synthesis of porous carbons for the separation of light hydrocarbons[J]. Chinese Journal of Chemical Engineering, 2022, 42: 130-150. |
54 | XING Huabin, ZHAO Xu, LI Rulong, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11): 1357-1363. |
55 | LIU Xiangyang, LIU Siqi, BAI Lihang, et al. Absorption and separation of CO2/C3H8 and C3H6/C3H8 by ionic liquid: Effect of molar volume[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 266-274. |
56 | LIU Xiangyang, AFZAL Waheed, PRAUSNITZ J M. Solubilities of small hydrocarbons in tetrabutylphosphonium bis(2, 4, 4-trimethylpentyl) phosphinate and in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Industrial & Engineering Chemistry Research, 2013, 52(42): 14975-14978. |
57 | LIU Xiangyang, AFZAL Waheed, YU Guangren, et al. High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis(2, 4, 4-trimethylpentyl) phosphinate[J]. The Journal of Physical Chemistry B, 2013, 117(36): 10534-10539. |
58 | LIU Xiangyang, RUIZ Elia, AFZAL Waheed, et al. High solubilities for methane, ethane, ethylene, and propane in trimethyloctylphosphonium bis(2, 4, 4-trimethylpentyl) phosphinate ([P8111][TMPP])[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 363-368. |
59 | PLAZA M G, FERREIRA A F P, SANTOS J C, et al. Propane/propylene separation by adsorption using shaped copper trimesate MOF[J]. Microporous and Mesoporous Materials, 2012, 157: 101-111. |
60 | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: Controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706. |
61 | 张健. 我国丙烯下游产业发展现状及趋势分析[J]. 石化技术与应用, 2022, 40(1): 66-71. |
ZHANG Jian. Development status and trend analysis of propylene downstream industry[J]. Petrochemical Technology & Application, 2022, 40(1): 66-71. | |
62 | ZHAO Xiang, WANG Yanxiang, LI Dongsheng, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189. |
63 | MOURA Leila, MISHRA Manas, BERNALES Varinia, et al. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B, 2013, 117(24): 7416-7425. |
64 | HE Maogang, LIU Siqi, BAI Lihang, et al. Propane/propylene separation and CO2 capture in magnetic ionic liquid[bmim][FeCl4][J]. Chemical Engineering Research and Design, 2018, 137: 186-193. |
65 | HUANG Yuqi, ZHANG Yuanbin, XING Huabin. Separation of light hydrocarbons with ionic liquids: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382. |
66 | CAMPER Dean, BECKER Collin, KOVAL Carl, et al. Diffusion and solubility measurements in room temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 445-450. |
67 | LIU Xiangyang, HE Maogang, LV Nan, et al. Selective absorption of CO2 from H2, O2 and N2 by 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate[J]. The Journal of Chemical Thermodynamics, 2016, 97: 48-54. |
68 | 赵旭. 离子液体吸收分离乙炔乙烯的分子模拟与实验研究[D]. 杭州: 浙江大学, 2014. |
ZHAO Xu. Separation of acetylene and ethylene with ionic liquids: A simulation and experimental study[D]. Hangzhou: Zhejiang University, 2014. | |
69 | ZHAO Xu, XING Huabin, YANG Qiwei, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids: A theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13): 3944-3953. |
70 | MEINDERSMA G W, DE HAAN A B. Conceptual process design for aromatic/aliphatic separation with ionic liquids[J]. Chemical Engineering Research and Design, 2008, 86(7): 745-752. |
71 | JONGMANS Mark T G, Jorg TRAMPÉ, SCHUUR Boelo, et al. Solute recovery from ionic liquids: A conceptual design study for recovery of styrene monomer from [4-mebupy][BF4][J]. Chemical Engineering and Processing: Process Intensification, 2013, 70: 148-161. |
72 | GARCIA VILLALUENGA J P, TABE-MOHAMMADI A. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes[J]. Journal of Membrane Science, 2000, 169(2): 159-174. |
73 | 丁淑娟. 苯和环己烷的分离研究进展[J]. 石油化工应用, 2019, 38(8): 6-8. |
DING Shujuan. Research progress on separation of benzene and cyclohexane[J]. Petrochemical Industry Application, 2019, 38(8): 6-8. | |
74 | SALLEH Zulhaziman, WAZEER Irfan, MULYONO Sarwono, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents—COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
75 | LETCHER T M, REDHI G G, RADLOFF S E, et al. Liquid-liquid equilibria of the ternary mixtures with sulfolane at 303.15K[J]. Journal of Chemical & Engineering Data, 1996, 41(3): 634-638. |
76 | LETCHER T M, NAICKER P K. Ternary liquid-liquid equilibria for mixtures of an n-alkane + an aromatic hydrocarbon + N-methyl-2-pyrrolidone at 298.2K and 1atm[J]. Journal of Chemical & Engineering Data, 1998, 43(6): 1034-1038. |
77 | MEINDERSMA G W, PODT A J G, DE HAAN A B. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid[J]. Fluid Phase Equilibria, 2006, 247(1/2): 158-168. |
78 | ARCE A, EARLE M J, RODRÍGUEZ H, et al. Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazoliumbis {(trifluoromethyl)sulfonyl}amide[J]. Green Chemistry, 2007, 9(1): 70-74. |
79 | ARCE A, EARLE M J, RODRÍGUEZ H, et al. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids: Effect of the alkyl-substituent length[J]. The Journal of Physical Chemistry B, 2007, 111(18): 4732-4736. |
80 | ZHOU Teng, WANG Ziyun, YE Yinmei, et al. Deep separation of benzene from cyclohexane by liquid extraction using ionic liquids as the solvent[J]. Industrial & Engineering Chemistry Research, 2012, 51(15): 5559-5564. |
81 | ABU-EISHAH S I, DOWAIDAR A M. Liquid-liquid equilibrium of ternary systems of cyclohexane + (benzene, + toluene, + ethylbenzene, or + o-xylene) + 4-methyl-N-butyl pyridinium tetrafluoroborate ionic liquid at 303.15K[J]. Journal of Chemical & Engineering Data, 2008, 53(8): 1708-1712. |
82 | AL-TUWAIM M S, ALKHALDI K H A E, FANDARY M S, et al. Extraction of propylbenzene or butylbenzene from dodecane using 4-methyl-N-butylpyridinium tetrafluoroborate, [mebupy][BF4], as an ionic liquid at different temperatures[J]. The Journal of Chemical Thermodynamics, 2011, 43(12): 1804-1809. |
83 | REQUEJO P F, Elena GÓMEZ, CALVAR Noelia, et al. Application of pyrrolidinium-based ionic liquid as solvent for the liquid extraction of benzene from its mixtures with aliphatic hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2015, 54(4): 1342-1349. |
84 | ARCE A, EARLE M J, RODRÍGUEZ H, et al. Bis {(trifluoromethyl)sulfonyl}amide ionic liquids as solvents for the extraction of aromatic hydrocarbons from their mixtures with alkanes: Effect of the nature of the cation[J]. Green Chemistry, 2009, 11(3): 365-372. |
85 | PENG D, HORVAT D P, PICCHIONI F. Computer-aided ionic liquid design and experimental validation for benzene-cyclohexane separation[J]. Industrial & Engineering Chemistry Research, 2021, 60(13): 4951-4961. |
86 | SALLEH M Z M, HADJ-KALI M K, WAZEER I, et al. Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids[J]. Journal of Molecular Liquids, 2019, 285: 716-726. |
87 | ZHANG Fan, LI Yong, ZHANG Lele, et al. Benzyl- and vinyl-functionalized imidazoium ionic liquids for selective separating aromatic hydrocarbons from alkanes[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 747-756. |
88 | YAO Congfei, HOU Yucui, WU Weize, et al. Imidazolium-based dicationic ionic liquids: Highly efficient extractants for separating aromatics from aliphatics[J]. Green Chemistry, 2018, 20(13): 3101-3111. |
89 | YU Hui, GENG Chuanqi, LI Xinyu, et al. Highly selective extraction of aromatics from aliphatics using an N-methylpyrrolidone-based protic ionic liquid[J]. The Canadian Journal of Chemical Engineering, 2023, 101(10): 5967-5976. |
90 | LARRIBA Marcos, NAVARRO Pablo, Julián GARCÍA, et al. Liquid-liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2714-2720. |
91 | CANALES R I, BRENNECKE J F. Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1685-1699. |
92 | REVELLI Anne-Laure, MUTELET Fabrice, JAUBERT Jean-Noël. Extraction of benzene or thiophene from n-heptane using ionic liquids. NMR and thermodynamic study[J]. The Journal of Physical Chemistry B, 2010, 114(13): 4600-4608. |
93 | DING Yan, GUO Yicang, SUN Yuhang, et al. Mixed ionic liquids as entrainers for aromatic extraction processes: Energy, economic, and environmental evaluations[J]. Industrial & Engineering Chemistry Research, 2022, 61(43): 16193-16208. |
94 | LARRIBA Marcos, NAVARRO Pablo, Julián GARCÍA, et al. Liquid-liquid extraction of toluene from n-alkanes using {[4empy][Tf2N]+[emim][DCA]} ionic liquid mixtures[J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1692-1699. |
95 | LARRIBA Marcos, NAVARRO Pablo, Julián GARCÍA, et al. Extraction of benzene, ethylbenzene, and xylenes from n-heptane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids[J]. Fluid Phase Equilibria, 2014, 380: 1-10. |
96 | MEINDERSMA G W, HANSMEIER A R, DE HAAN A B. Ionic liquids for aromatics extraction. Present status and future outlook[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7530-7540. |
97 | NAVARRO Pablo, MORENO Daniel, LARRIBA Marcos, et al. An overview process analysis of the aromatic-aliphatic separation by liquid-liquid extraction with ionic liquids[J]. Separation and Purification Technology, 2023, 316: 123848. |
98 | LI Rulong, XING Huabin, YANG Qiwei, et al. Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8588-8597. |
99 | 李如龙. 离子液体在乙烯/乙烷、1-己烯/正己烷分离中的应用基础研究[D]. 杭州: 浙江大学, 2012. |
LI Rulong. Applied fundamental research on the separations of ethylene/ethane and 1-hexene/n-hexane by ionic liquid[D]. Hangzhou: Zhejiang University, 2012. | |
100 | Urszula DOMAŃSKA, Michał WLAZŁO, Monika KARPIŃSKA. Activity coefficients at infinite dilution of organic solvents and water in 1-butyl-3-methylimidazolium dicyanamide. A literature review of hexane/hex-1-ene separation[J]. Fluid Phase Equilibria, 2016, 417: 50-61. |
101 | ZHU Jiqin, YU Yanmei, CHEN Jian, et al. Measurement of activity coefficients at infinite dilution for hydrocarbons in imidazolium-based ionic liquids and QSPR model[J]. Frontiers of Chemical Engineering in China, 2007, 1(2): 190-194. |
102 | XU Qianqian, SU Baogen, LUO Xinyi, et al. Accurate measurements of infinite dilution activity coefficients using gas chromatography with static-wall-coated open-tubular columns[J]. Analytical Chemistry, 2012, 84(21): 9109-9115. |
103 | ZHOU Qing, WANG Lisheng. Activity coefficients at infinite dilution of alkanes, alkenes, and alkyl benzenes in 1-butyl-3-methylimidazolium tetrafluoroborate using gas-liquid chromatography[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1698-1701. |
104 | REVELLI Anne-Laure, MUTELET Fabrice, TURMINE Mireille, et al. Activity coefficients at infinite dilution of organic compounds in 1-butyl-3-methylimidazolium tetrafluoroborate using inverse gas chromatography[J]. Journal of Chemical & Engineering Data, 2009, 54(1): 90-101. |
105 | BAHLMANN Matthias, NEBIG Silke, Jürgen GMEHLING. Activity coefficients at infinite dilution of alkanes and alkenes in 1-alkyl-3-methylimidazolium tetrafluoroborate[J]. Fluid Phase Equilibria, 2009, 282(2): 113-116. |
106 | ZHANG Juan, ZHANG Qinghua, QIAO Botao, et al. Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography[J]. Journal of Chemical & Engineering Data, 2007, 52(6): 2277-2283. |
107 | HEINTZ A, CASÁS L M, NESTEROV I A, et al. Thermodynamic properties of mixtures containing ionic liquids. 5. Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl)imide using gas-liquid chromatography[J]. Journal of Chemical & Engineering Data, 2005, 50(5): 1510-1514. |
108 | KRUMMEN Michael, WASSERSCHEID Peter, Jürgen GMEHLING. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique[J]. Journal of Chemical & Engineering Data, 2002, 47(6): 1411-1417. |
109 | YAO Congfei, HOU Yucui, SUN Ying, et al. Extraction of aromatics from aliphatics using a hydrophobic dicationic ionic liquid adjusted with small-content water[J]. Separation and Purification Technology, 2020, 236: 116287. |
110 | LI Xuenan, ZHANG Xiao, YANG Qiwei, et al. Separation of highly unsaturated fatty acid methyl esters from model bio-oils with ionic liquid-cosolvent as extractants[J]. RSC Advances, 2016, 6(65): 60709-60716. |
111 | XING Huabin, ZHANG Xiao, YANG Qiwei, et al. Separation of long chain fatty acids with different number of unsaturated bonds by fractional extraction: Experimental and COSMO-RS study[J]. Food Chemistry, 2014, 143: 411-417. |
112 | CAO Yingying, WANG Yaofeng, CHEN Bingtong, et al. Design of dual stimuli-responsive copolymerized ionic liquid with flexible phase transition temperature and its application in selective separation of artemisitene/artemisinin[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4463-4472. |
113 | 梁瑞斯. 以离子液体为介质萃取分离甾醇类物质的研究[D]. 杭州: 浙江大学, 2013. |
LIANG Ruisi. Separation of sterol compounds by ionic liquid-based liquid-liquid extraction[D]. Hangzhou: Zhejiang University, 2013. | |
114 | RUXTON C H S, REED S C, SIMPSON M J A, et al. The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence[J]. Journal of Human Nutrition and Dietetics, 2004, 17(5): 449-459. |
115 | CHEN Guan-Qun, JIANG Yue, CHEN Feng. Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis [J]. Food Chemistry, 2007, 104(4): 1580-1585. |
116 | SWERN D, PARKER W E. Application of urea complexes in the purification of fatty acids, esters, and alcohols. Ⅲ. Concentrates of natural linoleic and linolenic acids[J]. Journal of the American Oil Chemists Society, 1953, 30(1): 5-7. |
117 | SWERN D, PARKER W E. Application of urea complexes in the purification of fatty acids, esters, and alcohols. Ⅱ. Oleic acid and methyl oleate from olive oil[J]. Journal of the American Oil Chemists Society, 1952, 29(12): 614-615. |
118 | SWERN D, PARKER W E. Application of urea complexes in the purification of fatty acids, esters, and alcohols. Ⅰ. Oleic acid from inedible animal fats[J]. Journal of the American Oil Chemists Society, 1952, 29(10): 431-434. |
119 | 孙文菊, 武瑞霞, 陈杨扬, 等. 尿素包合法富集鱼油中EPA和DHA的研究[J]. 食品工业, 2016, 37(10): 37-40. |
SUN Wenju, WU Ruixia, CHEN Yangyang, et al. Enrichment of EPA and DHA from fish oil by urea adduction fractionation[J]. The Food Industry, 2016, 37(10): 37-40. | |
120 | 雍梁敏, 王丽蓉, 刘石生. 双溶剂冷冻结晶法分离橡胶籽油中α-亚麻酸工艺研究[J]. 食品科技, 2014, 39(7): 233-237. |
YONG Liangmin, WANG Lirong, LIU Shisheng. Separation process of α-linolenic acid from rubber seed oil by double solvent freezing crystallization[J]. Food Science and Technology, 2014, 39(7): 233-237. | |
121 | 侯雯雯, 刘世川, 杨东元, 等. 冷冻溶剂结晶法分离纯化混合脂肪酸中的亚油酸[J]. 中国油脂, 2011, 36(10): 54-56. |
HOU Wenwen, LIU Shichuan, YANG Dongyuan, et al. Separation of linoleic acid from mixed fatty acids by frozen solvent crystallization[J]. China Oils and Fats, 2011, 36(10): 54-56. | |
122 | Nuria RUBIO-RODRÍGUEZ, DE DIEGO Sara M, Sagrario BELTRÁN, et al. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods[J]. Journal of Food Engineering, 2012, 109(2): 238-248. |
123 | LI Min, PITTMAN Charles U, LI Tingyu. Extraction of polyunsaturated fatty acid methyl esters by imidazolium-based ionic liquids containing silver tetrafluoroborate—Extraction equilibrium studies[J]. Talanta, 2009, 78(4/5): 1364-1370. |
124 | FAN Chen, WEN Lijiao, CAO Xueli. A biphasic system based on guanidinium ionic liquid: Preparative separation of eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester by countercurrent chromatography[J]. Journal of Chromatography A, 2020, 1618: 460872. |
125 | LU Muwen, Chi-Tang HO, HUANG Qingrong. Extraction, bioavailability, and bioefficacy of capsaicinoids[J]. Journal of Food and Drug Analysis, 2017, 25(1): 27-36. |
126 | CHOI Cheol-Hee, JUNG Yong-Keun, Seon-Hee OH. Selective induction of catalase-mediated autophagy by dihydrocapsaicin in lung cell lines[J]. Free Radical Biology and Medicine, 2010, 49(2): 245-257. |
127 | SANTOS Poliane Lima, SANTOS Lana Naiadhy Silva, VENTURA Sónia Patrícia Marques, et al. Recovery of capsaicin from Capsicum frutescens by applying aqueous two-phase systems based on acetonitrile and cholinium-based ionic liquids[J]. Chemical Engineering Research and Design, 2016, 112: 103-112. |
128 | LAI H, SASAKI T, SINGH N P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. Expert Opinion on Therapeutic Targets, 2005, 9(5): 995-1007. |
129 | MENG Yuqing, MA Nan, Haining LYU, et al. Recent pharmacological advances in the repurposing of artemisinin drugs[J]. Medicinal Research Reviews, 2021, 41(6): 3156-3181. |
130 | WU Guolin, CHENG Bao, QIAN Hui, et al. Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics[J]. Organic & Biomolecular Chemistry, 2019, 17(28): 6854-6859. |
131 | 鲁洋洋, 王文俊, 李伯耿. 聚离子液体及其在天然产物分离中的应用[J]. 化工学报, 2016, 67(2): 416-424. |
LU Yangyang, WANG Wenjun, LI Bogeng. Poly(ionic liquid)s and their applications in natural product separation[J]. CIESC Journal, 2016, 67(2): 416-424. | |
132 | Julián GARCÍA, TORRECILLA J S, Adela FERNÁNDEZ, et al. (Liquid + liquid) equilibria in the binary systems (aliphatic, or aromatic hydrocarbons + 1-ethyl-3-methylimidazolium ethylsulfate, or 1-butyl-3-methylimidazolium methylsulfate ionic liquids)[J]. The Journal of Chemical Thermodynamics, 2010, 42(1): 144-150. |
133 | WANG Ruijie, WANG Junfeng, MENG Hong, et al. Liquid-liquid equilibria for benzene + cyclohexane + 1-methyl-3-methylimidazolium dimethylphosphate or + 1-ethyl-3-methylimidazolium diethylphosphate[J]. Journal of Chemical & Engineering Data, 2008, 53(5): 1159-1162. |
134 | Urszula DOMAŃSKA, LASKOWSKA Marta, MARCINIAK Andrzej. Phase equilibria of (1-ethyl-3-methylimidazolium ethylsulfate + hydrocarbon, + ketone, and + ether) binary systems[J]. Journal of Chemical & Engineering Data, 2008, 53(2): 498-502. |
135 | Urszula DOMAŃSKA, ROGUSZEWSKA Marlena, Marek KRÓLIKOWSKI, et al. Phase equilibria study of binary systems comprising an (ionic liquid + hydrocarbon)[J]. The Journal of Chemical Thermodynamics, 2015, 83: 90-96. |
136 | SHAH Syed Nasir, ISMAIL Mohd, MUTALIB Mohammad Ibrahim Abdul, et al. Extraction and recovery of toxic acidic components from highly acidic oil using ionic liquids[J]. Fuel, 2016, 181: 579-586. |
137 | PLECHKOVA N V, SEDDON K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. |
138 | FERRO V R, MOYA C, MORENO D, et al. Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property methods[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 980-989. |
139 | DE RIVA J, FERRO V R. Aspen Plus supported conceptual design of the aromatic-aliphatic separation from low aromatic content naphtha using 4-methyl-N-butylpyridinium tetrafluoroborate ionic liquid[J]. Fuel Processing Technology, 2016, 146: 29-38. |
140 | LARRIBA Marcos, DE RIVA Juan, NAVARRO Pablo, et al. COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf2]+[emim][DCA]} ionic liquid mixture[J]. Separation and Purification Technology, 2018, 190: 211-227. |
141 | WANG Jingwen, SONG Zhen, CHENG Hongye, et al. Computer-aided design of ionic liquids as absorbent for gas separation exemplified by CO2 capture cases[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12025-12035. |
142 | ZHANG Xiang, DING Xuechong, SONG Zhen, et al. Integrated ionic liquid and rate-based absorption process design for gas separation: Global optimization using hybrid models[J]. AIChE Journal, 2021, 67(10): e17340. |
143 | AMIRI Nesrine, BENYOUNES Hassiba, LOUNIS Zoubida, et al. Design of absorption process for CO2 capture using cyano based anion ionic liquid[J]. Chemical Engineering Research and Design, 2021, 169: 239-249. |
144 | SANTIAGO R, BEDIA J, MORENO D, et al. Acetylene absorption by ionic liquids: A multiscale analysis based on molecular and process simulation[J]. Separation and Purification Technology, 2018, 204: 38-48. |
145 | LI Guoxuan, GAO Qinghe, LIU Qinghua, et al. Extraction of polycyclic aromatic hydrocarbons from fluid catalytic cracking diesel with ionic liquids[J]. AIChE Journal, 2023, 69(2): e17914. |
146 | TSAI Chang-Che, MCNEELEY Adam, LIN Shiang-Tai, et al. Evaluation of thermophysical data, COSMO-SAC predictions, and feed simplifications for aromatic extraction process simulation using ionic liquid [EMIM][NTf2][J]. AIChE Journal, 2023, 69(2): e17916. |
147 | LEI Yang, ZHOU Yuhang, WEI Zhiqiang, et al. Optimal design of an ionic liquid (IL)-based aromatic extractive distillation process involving energy and economic evaluation[J]. Industrial & Engineering Chemistry Research, 2021, 60(9): 3605-3616. |
148 | TAO Guohong, HE Ling, SUN Ning, et al. New generation ionic liquids: Cations derived from amino acids[J]. Chemical Communications, 2005(28): 3562-3564. |
149 | FUKUMOTO Kenta, YOSHIZAWA Masahiro, OHNO Hiroyuki. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127(8): 2398-2399. |
150 | TAO Duanjian, CHENG Zheng, CHEN Fengfeng, et al. Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids[J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1542-1548. |
151 | LIU Xianxian, JI Cai, YANG Qiwei, et al. Carboxylate ionic liquids combining low cytotoxicity toward HepG2 cell and high separation efficiency for bioactive molecules[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1974-1981. |
152 | MUHAMMAD N, HOSSAIN M I, MAN Z, et al. Synthesis and physical properties of choline carboxylate ionic liquids[J]. Journal of Chemical & Engineering Data, 2012, 57(8): 2191-2196. |
[1] | 陈瑶姬, 任成瑜, 胡达清, 卢晗锋, 葛春亮, 崔国凯. 离子液体强化一氧化碳转化[J]. 化工进展, 2024, 43(1): 124-134. |
[2] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[3] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[4] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[5] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[6] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[7] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[8] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[9] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[12] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[13] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[14] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[15] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |