化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 246-259.DOI: 10.16085/j.issn.1000-6613.2023-1102
收稿日期:
2023-07-03
修回日期:
2023-09-26
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
童杨,沈建华
作者简介:
陈匡胤(2000—),女,硕士研究生,研究方向为纳米材料。E-mail:Y82210332@mail.ecust.edu.cn。
基金资助:
CHEN Kuangyin1(), LI Ruilan1, TONG Yang2(), SHEN Jianhua1()
Received:
2023-07-03
Revised:
2023-09-26
Online:
2023-10-25
Published:
2023-11-30
Contact:
TONG Yang, SHEN Jianhua
摘要:
气体扩散层(GDL)在质子交换膜燃料电池(PEMFC)中起到支撑催化层、传输反应气体和排出反应过程中产生的水的作用,设计和优化GDL的结构对提升燃料电池的性能有重要作用。本文首先介绍了氢燃料电池应用前景,简述了PEMFC的结构和工作原理,指出了目前GDL的气液传输能力不足的问题,分析了孔结构、碳材料、微孔层微观结构、润湿性和耐久性五个因素对GDL性能的影响,并归纳了当前的研究进展,同时还涵盖了与GDL内传质过程相关的建模方法。最后总结了影响GDL性能的各种因素,并对质子交换膜燃料电池内的GDL发展进行了展望,指出用新型金属泡沫材料代替传统碳材料构建气体扩散层-双极板集成结构从而缩短传质路径并降低传质阻力,提出利用新兴的3D打印技术去构建高精度具有复杂结构的气体扩散层。本综述对未来优化GDL结构、提高燃料电池性能具有一定的指导意义。
中图分类号:
陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259.
CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259.
63 | HUANG Xiang, HE Yinwu, ZHOU Wei, et al. Pore network modeling of fibrous porous media of uniform and gradient porosity[J]. Powder Technology, 2019, 343: 350-361. |
64 | NIU Zhiqiang, BAO Zhiming, WU Jingtian, et al. Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells[J]. Applied Energy, 2018, 232: 443-450. |
65 | PARK Jae Wan, JIAO Kui, LI Xianguo. Numerical investigations on liquid water removal from the porous gas diffusion layer by reactant flow[J]. Applied Energy, 2010, 87(7): 2180-2186. |
66 | WANG C Y, CHENG P. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—Ⅰ. Model development[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3607-3618. |
67 | CHENG P, WANG C Y. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—Ⅱ. Numerical simulation of the transport of organic compounds in the subsurface[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3619-3632. |
68 | HE Wensheng, YI Jung S, VAN NGUYEN Trung. Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields[J]. AIChE Journal, 2000, 46(10): 2053-2064. |
69 | NATARAJAN Dilip, VAN NGUYEN Trung. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell[J]. Journal of Power Sources, 2003, 115(1): 66-80. |
70 | Jin Hyun NAM, KAVIANY Massoud. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium[J]. International Journal of Heat and Mass Transfer, 2003, 46(24): 4595-4611. |
71 | WEBER Adam Z, DARLING Robert M, NEWMAN John. Modeling two-phase behavior in PEFCs[J]. Journal of the Electrochemical Society, 2004, 151(10): A1715. |
72 | NATARAJAN Dilip, VAN NGUYEN Trung. A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors[J]. Journal of the Electrochemical Society, 2001, 148(12): A1324. |
73 | SIEGEL N P, ELLIS M W, NELSON D J, et al. A two-dimensional computational model of a PEMFC with liquid water transport[J]. Journal of Power Sources, 2004, 128(2): 173-184. |
74 | MUKHERJEE Partha P, KANG Qinjun, WANG Chaoyang. Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—Progress and perspective[J]. Energy & Environmental Science, 2011, 4(2): 346-369. |
1 | ILBEYGI Hamid, GHASEMI Mostafa, EMADZADEH D, et al. Power generation and wastewater treatment using a novel SPEEK nanocomposite membrane in a dual chamber microbial fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(1): 477-487. |
2 | LIU Jiao, YU Haiyang, ZHANG Tianheng, et al. Honeycomb-like self-supported Co-N-C catalysts with an ultrastable structure: Highly efficient electrocatalysts toward oxygen reduction reaction in alkaline and acidic solutions[J]. ACS Applied Energy Materials, 2021, 4(3): 2522-2530. |
3 | ZHU Mengzhao, ZHAO Chao, LIU Xiaokang, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells[J]. ACS Catalysis, 2021, 11(7): 3923-3929. |
4 | ABDELKAREEM Mohammad ALI, ELSAID Khaled, WILBERFORCE Tabbi, et al. Environmental aspects of fuel cells: A review[J]. Science of the Total Environment, 2021, 752: 141803. |
5 | ELWAN Hosni Ahmed, MAMLOUK Mohamed, SCOTT Keith. A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2021, 484: 229197. |
6 | LUCIANI Sara, TONOLI Andrea. Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles[J]. Energies, 2022, 15(6): 2004. |
7 | BELZ S. A synergetic use of hydrogen and fuel cells in human spaceflight power systems[J]. Acta Astronautica, 2016, 121: 323-331. |
8 | YAN Mei, LI Guotong, LI Menglin, et al. Hierarchical predictive energy management of fuel cell buses with launch control integrating traffic information[J]. Energy Conversion and Management, 2022, 256: 115397. |
9 | 氢云链. 中国首款量产氢轿车:长安深蓝C385[J]. 上海节能, 2022(6): 725. |
QING Yunlian. China’s first mass-produced hydrogen car: Changan Deep Blue C385[J]. Shanghai Energy Conservation, 2022(6): 725. | |
10 | JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
11 | JEON Dong Hyup, KIM Kwang Nam, BAEK Seung Man, et al. The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12499-12511. |
12 | Željko PENGA, BERGBREITER Christian, BARBIR Frano, et al. Numerical and experimental analysis of liquid water distribution in PEM fuel cells[J]. Energy Conversion and Management, 2019, 189: 167-183. |
13 | 杨景帅. 燃料电池用新型耐高温质子交换膜的制备与性能研究[D]. 沈阳: 东北大学, 2013. |
YANG Jingshuai. Preparation and investigation of novel high temperature proton exchange membranes for fuel cell applications[D]. Shenyang: Northeastern University, 2013. | |
14 | WANG Yun, RUIZ DIAZ Daniela Fernanda, CHEN Ken S, et al. Materials, technological status, and fundamentals of PEM fuel cells—A review[J]. Materials Today, 2020, 32: 178-203. |
15 | XING Lei, SHI Weidong, SU Huaneng, et al. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization[J]. Energy, 2019, 177: 445-464. |
16 | PARK Sehkyu, LEE Jong-Won, POPOV Branko N. A review of gas diffusion layer in PEM fuel cells: Materials and designs[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865. |
17 | WU Rui, ZHU Xun, LIAO Qiang, et al. A pore network study on the role of micro-porous layer in control of liquid water distribution in gas diffusion layer[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7588-7593. |
18 | NANADEGANI Fereshteh Salimi, LAY Ebrahim Nemati, SUNDEN Bengt. Effects of an MPL on water and thermal management in a PEMFC[J]. International Journal of Energy Research, 2019, 43(1): 274-296. |
19 | FISHMAN Z, BAZYLAK A. Heterogeneous through-plane porosity distributions for treated PEMFC GDLs Ⅰ. PTFE effect[J]. Journal of the Electrochemical Society, 2011, 158(8): B841. |
20 | OMRANI Reza, SHABANI Bahman. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: A review[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28515-28536. |
21 | Vikalp JHA, HARIHARAN R, KRISHNAMURTHY Balaji. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311. |
22 | XIA Lingchao, NI Meng, HE Qijiao, et al. Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity[J]. Applied Energy, 2021, 300: 117357. |
23 | Prince ABRAHAM B, Kalidasa MURUGAVEL K. Influence of catalyst layer and gas diffusion layer porosity in proton exchange membrane fuel cell performance[J]. Electrochimica Acta, 2021, 389: 138793. |
24 | KONG Chang sun, KIM Do-Young, LEE Han-Kyu, et al. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2002, 108(1/2): 185-191. |
25 | TANG Haolin, WANG Shenlong, PAN Mu, et al. Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2007, 166(1): 41-46. |
26 | Donggun KO, Seungwoo DOH, PARK Hyun Sun, et al. The effect of through plane pore gradient GDL on the water distribution of PEMFC[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2369-2380. |
27 | OKONKWO Paul C, OTOR Clement. A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system[J]. International Journal of Energy Research, 2021, 45(3): 3780-3800. |
28 | MASAYOSHI Yuasa, AKIKO Koga, TETSUYA Kida, et al. Structural optimization of gas diffusion electrodes loaded with LaMnO3 electrocatalysts[J]. Journal of Applied Electrochemistry, 2010, 40(3): 675-681. |
29 | WANG Xiaoli, ZHANG Huamin, ZHANG Jianlu, et al. A bi-functional micro-porous layer with composite carbon black for PEM fuel cells[J]. Journal of Power Sources, 2006, 162(1): 474-479. |
30 | CHEN Honghua, CHANG Min-Hsing. Effect of cathode microporous layer composition on proton exchange membrane fuel cell performance under different air inlet relative humidity[J]. Journal of Power Sources, 2013, 232: 306-309. |
31 | LIN Guangyi, LIU Shouyi, YU Boquan, et al. Preparation of graded microporous layers for enhanced water management in fuel cells[J]. Journal of Applied Polymer Science, 2020, 137(47): e49564. |
32 | LIN Shengyan, CHANG Min-Hsing. Effect of microporous layer composed of carbon nanotube and acetylene black on polymer electrolyte membrane fuel cell performance[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7879-7885. |
33 | XIE Zhiyong, CHEN Guofen, YU Xiao, et al. Carbon nanotubes grown in situ on carbon paper as a microporous layer for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(29): 8958-8965. |
34 | LEE J, BANERJEE R, GEORGE M G, et al. Multiwall carbon nanotube-based microporous layers for polymer electrolyte membrane fuel cells[J]. Journal of the Electrochemical Society, 2017, 164(12): F1149-F1157. |
35 | OWEJAN Jon P, OWEJAN Jeanette E, GU Wenbin, et al. Water transport mechanisms in PEMFC gas diffusion layers[J]. Journal of the Electrochemical Society, 2010, 157(10): B1456. |
36 | ZHOU Chong, GUO Lingyi, CHEN Li, et al. Pore-scale modeling of air–water two phase flow and oxygen transport in gas diffusion layer of proton exchange membrane fuel cell[J]. Energies, 2021, 14(13): 3812. |
37 | SHI Xin, JIAO Daokuan, BAO Zhiming, et al. Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of micro-porous layer cracks[J]. International Journal of Hydrogen Energy, 2022, 47(9): 6247-6258. |
38 | SASABE Takashi, DEEVANHXAY Phengxay, TSUSHIMA Shohji, et al. Soft X-ray visualization of the liquid water transport within the cracks of micro porous layer in PEMFC[J]. Electrochemistry Communications, 2011, 13(6): 638-641. |
39 | MARKÖTTER H, MANKE I, KRÜGER P, et al. Investigation of 3D water transport paths in gas diffusion layers by combined in situ synchrotron X-ray radiography and tomography[J]. Electrochemistry Communications, 2011, 13(9): 1001-1004. |
40 | ALRWASHDEH S S, MARKÖTTER H, HAUßMANN J, et al. Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers[J]. Energy, 2016, 102: 161-165. |
41 | YANG Tien-Fu, HSUEH Ching-Yi, CHEN Bolin, et al. Effects of fluorinated ethylene propylene contents in a novel gas diffusion layer on cell performance of a proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2022, 46(2): 1553-1564. |
42 | BOTTINO Aldo, CAPANNELLI Gustavo, COMITE Antonio, et al. Microporous layers based on poly(vinylidene fluoride) and sulfonated poly(vinylidene fluoride)[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14690-14698. |
43 | ZHOU Ke, LI Tianya, HAN Yufen, et al. Optimizing the hydrophobicity of GDL to improve the fuel cell performance[J]. RSC Advances, 2021, 11(4): 2010-2019. |
44 | LI Linbo, CHEN Jun, MOSALI Venkata Sai Sriram, et al. Hydrophobicity graded gas diffusion layer for stable electrochemical reduction of CO2 [J]. Angewandte Chemie International Edition, 2022, 61(39): e202208534. |
45 | FERREIRA Rui B, FALCÃO D S, OLIVEIRA V B, et al. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment[J]. Electrochimica Acta, 2017, 224: 337-345. |
46 | MORTAZAVI Mehdi, TAJIRI Kazuya. Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells (PEFCs)[J]. Journal of Power Sources, 2014, 245: 236-244. |
47 | SCHWEISS R, STEEB M, WILDE P M. Mitigation of water management in PEM fuel cell cathodes by hydrophilic wicking microporous layers[J]. Fuel Cells, 2010, 10(6): 1176-1180. |
75 | HINEBAUGH James, FISHMAN Zachary, BAZYLAK A. Unstructured pore network modeling with heterogeneous PEMFC GDL porosity distributions[J]. Journal of the Electrochemical Society, 2010, 157(11): B1651. |
76 | SINHA Puneet K, WANG Chaoyang. Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell[J]. Electrochimica Acta, 2007, 52(28): 7936-7945. |
77 | SINHA Puneet K, MUKHERJEE Partha P, WANG Chaoyang. Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells[J]. Journal of Materials Chemistry, 2007, 17(30): 3089-3103. |
78 | FAZELI Mohammadreza, HINEBAUGH James, BAZYLAK Aimy. Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling[J]. ECS Transactions, 2014, 64(3): 593-602. |
79 | SAKAIDA Satoshi, TABE Yutaka, CHIKAHISA Takemi. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method[J]. Journal of Power Sources, 2017, 361: 133-143. |
80 | YANG Mingyang, JIANG Y, LIU Jinling, et al. Lattice Boltzmann method modeling and experimental study on liquid water characteristics in the gas diffusion layer of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10366-10380. |
81 | RAMA Pratap, LIU Yu, CHEN Rui, et al. An X-ray tomography based lattice boltzmann simulation study on gas diffusion layers of polymer electrolyte fuel cells[J]. Journal of Fuel Cell Science and Technology, 2010, 7(3): 1. |
82 | RAMA P, LIU Y, CHEN R, et al. Simulation of liquid water breakthrough in a nanotomography reconstruction of a carbon paper gas-diffusion layer[J]. AIChE Journal, 2012, 58(2): 646-655. |
48 | KITAHARA Tatsumi, NAKAJIMA Hironori, OKAMURA Kosuke. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions[J]. Journal of Power Sources, 2015, 283: 115-124. |
49 | SPERNJAK Dusan, MUKUNDAN Rangachary, BORUP Rodney L, et al. Enhanced water management of polymer electrolyte fuel cells with additive-containing microporous layers[J]. ACS Applied Energy Materials, 2018, 1(11): 6006-6017. |
50 | KORESAWA Ryo, UTAKA Yoshio. Improvement of oxygen diffusion characteristic in gas diffusion layer with planar-distributed wettability for polymer electrolyte fuel cell[J]. Journal of Power Sources, 2014, 271: 16-24. |
51 | GUO Feng, YANG Xiaoling, JIANG Haibo, et al. An ultrasonic atomization spray strategy for constructing hydrophobic and hydrophilic synergistic surfaces as gas diffusion layers for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2020, 451: 227784. |
52 | GERTEISEN D, HEILMANN T, ZIEGLER C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2): 348-354. |
53 | MANAHAN M P, HATZELL M C, KUMBUR E C, et al. Laser perforated fuel cell diffusion media. Part I: Related changes in performance and water content[J]. Journal of Power Sources, 2011, 196(13): 5573-5582. |
54 | Antoni FORNER-CUENCA, BIESDORF Johannes, GUBLER Lorenz, et al. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers[J]. Advanced Materials, 2015, 27(41): 6317-6322. |
55 | UTAKA Yoshio, KORESAWA Ryo. Effect of wettability-distribution pattern of the gas diffusion layer with a microgrooved separator on polymer electrolyte fuel cell performance[J]. Journal of Power Sources, 2017, 363: 227-233. |
56 | ZHANG Wenhui, GUO Feng, ZHOU Yingjie, et al. Gas diffusion layer with a regular hydrophilic structure boosts the power density of proton exchange membrane fuel cells via the construction of water highways[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17578-17584. |
57 | HIRAMITSU Yusuke, SATO Hitoshi, KOBAYASHI Kenji, et al. Controlling gas diffusion layer oxidation by homogeneous hydrophobic coating for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2011, 196(13): 5453-5469. |
58 | YU Shuchun, HAO Jinkai, LI Jin, et al. Effect of distribution of polytetrafluoroethylene on durability of gas diffusion backing in proton exchange membrane fuel cell[J]. Materials Research Bulletin, 2020, 122: 110684. |
59 | LATORRATA Saverio, GALLO STAMPINO Paola, CRISTIANI Cinzia, et al. Performance evaluation and durability enhancement of FEP-based gas diffusion media for PEM fuel cells[J]. Energies, 2017, 10(12): 2063. |
60 | CHUN Jeong Hwan, Dong Hyun JO, KIM Sang Gon, et al. Improvement of the mechanical durability of micro porous layer in a proton exchange membrane fuel cell by elimination of surface cracks[J]. Renewable Energy, 2012, 48: 35-41. |
61 | WANG Z H, WANG C Y, CHEN K S. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2001, 94(1): 40-50. |
62 | ZHAO Benzhong, MACMINN Christopher W, PRIMKULOV Bauyrzhan K, et al. Comprehensive comparison of pore-scale models for multiphase flow in porous media[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 13799-13806. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[3] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[6] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[7] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[8] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[9] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[10] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[11] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[14] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[15] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |