化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 219-232.DOI: 10.16085/j.issn.1000-6613.2023-0633
马伊(), 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军
收稿日期:
2023-04-09
修回日期:
2023-07-17
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
马伊
作者简介:
马伊(1982—),男,博士,高级工程师,研究方向为新能源材料与高分子材料。E-mail:mayi@risun.com。
MA Yi(), CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun
Received:
2023-04-09
Revised:
2023-07-17
Online:
2023-10-25
Published:
2023-11-30
Contact:
MA Yi
摘要:
在“碳达峰、碳中和”背景下,中国新能源汽车数量激增,锂离子电池大规模应用导致其报废带来的问题不容小觑,如战略金属资源的浪费,对环境、人体健康的影响等。因此,废旧锂离子电池资源再利用是十分必要的,特别是正极材料的回收。目前正极材料的回收方法主要包含火法冶金、湿法冶金、微生物冶金和低共熔溶剂浸出等,本文着重介绍了新兴的低共熔溶剂浸出法,根据氢键供体和受体的不同以及有无外场辅助将低共熔溶剂分为5类,总结了低共熔溶剂浸出法的最新进展,概述了DES浸出正极材料的还原作用,通过缩核模型解释了DES浸出的化学反应动力学原理和作用机制,同时对低共熔溶剂回收废旧电池的发展提出了面临的问题并进行了展望。该工作为低共熔溶剂浸出正极材料的进一步深入研究与规模化应用提供了可行性的指导与参考。
中图分类号:
马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232.
MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232.
DES | 液固比 | T/℃ | t/h | 浸出效果 | 参考文献 |
---|---|---|---|---|---|
ChCl∶Gly比为1∶2 | 2.5g/L | 180 | 2 | Co:47.59%,Li:50.4% | [ |
ChCl∶LAA比为2∶1.6 | 1∶25 | 50 | 1 | Ni、Co、Mn>96% | |
ChCl∶BSA∶EtOH比为1∶1∶2 | 20g/L | 90 | 2 | Co:98%,Li:99% | [ |
ChCl∶MAL∶PTSA | 20g/L | 100 | 24 | Co:98.61%,Li:98.78% | [ |
ChCl∶Urea∶EG比为1∶1∶2 | 9.69g/L | 100 | 72 | Co:1.61%,Li:92.82%,Ni:0.72%,Mn:0.42% | [ |
TA(20g/L)∶CH3COOH(1mol/L) | 20g/L | 80 | 2 | Co:94%,Li:99% | [ |
EG∶CA比为2.5∶1 | 15g/L | 95 | 10 | Co:96.2%,Li:99.1%,Ni:97.6%,Mn:98.3% | [ |
PEG∶PSA比为1∶1 | 20g/L | 100 | 24 | Co:99.5% | [ |
ChCl∶LA比为2∶1 | 70 | 24 | Li、Ni、Co、Mn为100% | [ | |
ChCl∶CA比为2∶1, 35% H2O | 20g/L | 40 | 1 | Co>98% | [ |
BCl∶EG比为1∶5 | 25g/kg | 140 | 0.17 | Li、Ni、Co、Mn>99% | [ |
ChCl∶EG | 12.5g/L | 180 | 240 | Li:91.63%,Co:92.52%,Ni:94.92%,Mn:95.47% | [ |
ChCl∶OA∶2H2O | 20g/L | 100 | 0.17 | Li:99.05%,Co:99.21% | [ |
EG∶SAD比为12∶1 | 40g/L | 110 | 6 | Li:98.3%,Co:93.5%,Ni:99.1%,Mn:100% | [ |
表1 部分DESs组成及浸出效率
DES | 液固比 | T/℃ | t/h | 浸出效果 | 参考文献 |
---|---|---|---|---|---|
ChCl∶Gly比为1∶2 | 2.5g/L | 180 | 2 | Co:47.59%,Li:50.4% | [ |
ChCl∶LAA比为2∶1.6 | 1∶25 | 50 | 1 | Ni、Co、Mn>96% | |
ChCl∶BSA∶EtOH比为1∶1∶2 | 20g/L | 90 | 2 | Co:98%,Li:99% | [ |
ChCl∶MAL∶PTSA | 20g/L | 100 | 24 | Co:98.61%,Li:98.78% | [ |
ChCl∶Urea∶EG比为1∶1∶2 | 9.69g/L | 100 | 72 | Co:1.61%,Li:92.82%,Ni:0.72%,Mn:0.42% | [ |
TA(20g/L)∶CH3COOH(1mol/L) | 20g/L | 80 | 2 | Co:94%,Li:99% | [ |
EG∶CA比为2.5∶1 | 15g/L | 95 | 10 | Co:96.2%,Li:99.1%,Ni:97.6%,Mn:98.3% | [ |
PEG∶PSA比为1∶1 | 20g/L | 100 | 24 | Co:99.5% | [ |
ChCl∶LA比为2∶1 | 70 | 24 | Li、Ni、Co、Mn为100% | [ | |
ChCl∶CA比为2∶1, 35% H2O | 20g/L | 40 | 1 | Co>98% | [ |
BCl∶EG比为1∶5 | 25g/kg | 140 | 0.17 | Li、Ni、Co、Mn>99% | [ |
ChCl∶EG | 12.5g/L | 180 | 240 | Li:91.63%,Co:92.52%,Ni:94.92%,Mn:95.47% | [ |
ChCl∶OA∶2H2O | 20g/L | 100 | 0.17 | Li:99.05%,Co:99.21% | [ |
EG∶SAD比为12∶1 | 40g/L | 110 | 6 | Li:98.3%,Co:93.5%,Ni:99.1%,Mn:100% | [ |
1 | HOU Caixia, WANG Jiajun, CHENG Huan, et al. Hyper-coal as binder for coking: Macroscopic caking property, microstructure basis and extraction temperature optimization index[J]. International Journal of Coal Preparation and Utilization, 2023, 43(3): 520-537. |
2 | 卢奇秀. 中汽协: 我国新能源汽车产销连续8年全球第一[N]. 中国能源报, 2023-01-16(11). |
3 | 国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[J]. 中华人民共和国国务院公报, 2020(31): 16-23. |
The State Council of the People’s Republic of China. Notice of the general office of the state council on printing and distributing the development plan of new energy automobile industry (2021—2035)[J]. Gazette of the State Council of the People’s Republic of China, 2020(31): 16-23. | |
4 | XU Panpan, TAN Darren H S, JIAO Binglei, et al. A materials perspective on direct recycling of lithium-ion batteries: Principles, challenges and opportunities[J]. Advanced Functional Materials, 2023, 33(14): 2213168. |
5 | WANG Mengmeng, LIU Kang, YU Jiadong, et al. Challenges in recycling spent lithium-ion batteries: Spotlight on polyvinylidene fluoride removal[J]. Global Challenges, 2023, 7(3): 2200237. |
6 | BAI Xue, JIANG Zengyan, SUN Yanzhi, et al. Clean universal solid-state recovery method of waste lithium-ion battery ternary positive materials and their electrochemical properties[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3673-3686. |
7 | YOON Juhee, HAN Geonhee, CHO Sungmin, et al. Microbial-copolyester-based eco-friendly binder for lithium-ion battery electrodes[J]. ACS Applied Polymer Materials, 2023, 5(2): 1199-1207. |
8 | TRAN M K, RODRIGUES M F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4): 339-345. |
9 | 李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13. |
LI Wenchang, LI Jianwei, XIE Guiqing, et al. Critical minerals in China: Current status, research focus and resource strategic analysis[J]. Earth Science Frontiers, 2022, 29(1): 1-13. | |
10 | ZHU Ahui, BIAN Xinyu, HAN Weijiang, et al. The application of deep eutectic solvents in lithium-ion battery recycling: A comprehensive review[J]. Resources, Conservation and Recycling, 2023, 188: 106690. |
11 | 程明强, 汝娟坚, 华一新, 等. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展[J]. 化工进展, 2022, 41(6): 3293-3305. |
CHENG Mingqiang, RU Juanjian, HUA Yixin, et al. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293-3305. | |
12 | WANG Ronghao, ZHANG Yuhao, SUN Kaiwen, et al. Emerging green technologies for recovery and reuse of spent lithium-ion batteries — A review[J]. Journal of Materials Chemistry A, 2022, 10(33): 17053-17076. |
13 | QIAO Yu, ZHAO Huaping, SHEN Yonglong, et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives[J]. EcoMat, 2023, 5(4): e12321. |
14 | MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6(3): 323. |
15 | YAN Pengfei, ZHENG Jianming, CHEN Tianwu, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode[J]. Nature Communications, 2018, 9: 2437. |
16 | 颜群轩, 罗碧云, 陈嘉鑫, 等. 废旧磷酸铁锂电池可持续回收技术研究进展[J/OL]. 矿冶工程, 2023. . |
YAN Qunxuan, LUO Biyun, CHEN Jiaxin, et al. Progress in sustainable recycling of spent LiFePO4 batteries[J]. Mining and Metallurgical engineering, 2023. . | |
17 | CHEN Zuhang, DENG Yelin, LI Honglei, et al. An efficient regrouping method of retired lithium-ion iron phosphate batteries based on incremental capacity curve feature extraction for echelon utilization[J]. Journal of Energy Storage, 2022, 56: 105917. |
18 | DU Kaidi, Edison Huixiang ANG, WU Xinglong, et al. Progresses in sustainable recycling technology of spent lithium-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1012-1036. |
19 | 徐政和, 刘振达, 王树宾, 等. 湿法回收废旧锂离子电池有价金属的研究进展[J]. 中国矿业大学学报, 2022, 51(3): 454-465. |
XU Zhenghe, LIU Zhenda, WANG Shubin, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3): 454-465. | |
20 | ABBOTT A P, GLEN C, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. |
21 | Gregorio GARCÍA, ATILHAN Mert, APARICIO Santiago. The impact of charges in force field parameterization for molecular dynamics simulations of deep eutectic solvents[J]. Journal of Molecular Liquids, 2015, 211: 506-514. |
22 | Kudłak BŁAŻEJ, KATARZYNA Owczarek, JACEK Namieśnik. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—A review[J]. Environmental Science and Pollution Research, 2015, 22(16): 11975-11992. |
23 | JURIĆ T, UKA D, HOLLÓ B B, et al. Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents[J]. Journal of Molecular Liquids, 2021, 343: 116968. |
24 | 马文君, 张旭, 刘孟顺, 等. 新兴湿法退役锂电池正极材料回收技术研究进展[J/OL]. 化工进展, 2023, DOI:10.16085/j.issn.1000-6613.2023-0547 . |
MA Wenjun, ZHANG Xu, LIU Mengshun, et al. Research progress of novel hydrometallurgy in recycling cathode materials from spent lithium-ion batteries[J/OL]. Chemical Industry and Engineering Progress, 2023, DOI: 10.16085/j.issn.1000-6613.2023-0547 . | |
25 | CHEN Xiangping, XU Bao, ZHOU Tao, et al. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries[J]. Separation and Purification Technology, 2015, 144: 197-205. |
26 | JOULIÉ M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. |
27 | FAN Yuxin, KONG Yuelin, JIANG Pinxian, et al. Development and challenges of deep eutectic solvents for cathode recycling of end-of-life lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 463: 142278. |
28 | LUO Yi, YIN Chengzhe, Leming OU, et al. Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents[J]. Green Chemistry, 2022, 24(17): 6562-6570. |
29 | WANG Kang, HU Tianyou, SHI Penghui, et al. Efficient recovery of value metals from spent lithium-ion batteries by combining deep eutectic solvents and coextraction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1149-1159. |
30 | SCHIAVI P G, ALTIMARI P, BRANCHI M, et al. Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent[J]. Chemical Engineering Journal, 2021, 417: 129249. |
31 | CHEN Yu, LU Yanhong, LIU Zhenghui, et al. Efficient dissolution of lithium-ion batteries cathode LiCoO2 by polyethylene glycol-based deep eutectic solvents at mild temperature[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11713-11720. |
32 | CHEN Linlin, CHAO Yanhong, LI Xiaowei, et al. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries[J]. Green Chemistry, 2021, 23(5): 2177-2184. |
33 | LI Taibai, XIONG Yige, YAN Xiaohui, et al. Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery[J]. Journal of Energy Chemistry, 2022, 72: 532-538. |
34 | LU Qingqiang, CHEN Linlin, LI Xiaowei, et al. Sustainable and convenient recovery of valuable metals from spent Li-ion batteries by a one-pot extraction process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13851-13861. |
35 | MORINA Riccardo, CALLEGARI Daniele, MERLI Daniele, et al. Cathode active material recycling from spent lithium batteries: A green (circular) approach based on deep eutectic solvents[J]. ChemSusChem, 2022, 15(2): e202102080. |
36 | ROLDÁN-RUIZ M J, FERRER M L, GUTIÉRREZ M C, et al. Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5437-5445. |
37 | THOMPSON D L, PATELI I M, LEI C, et al. Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents[J]. Green Chemistry, 2022, 24(12): 4877-4886. |
38 | LU Bing, DU Rong, WANG Gang, et al. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents[J]. Environmental Research, 2022, 212: 113286. |
39 | PRASETYO E, MURYANTA W A, ANGGRAINI A G, et al. Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2022, 24(3): 927-938. |
40 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. Journal of Chemical & Engineering Data, 2006, 51(4): 1280-1282. |
41 | TIAN Yurun, CHEN Wenjun, ZHANG Baolong, et al. A weak acidic and strong coordinated deep eutectic solvent for recycling of cathode from spent lithium-ion batteries[J]. ChemSusChem, 2022, 15(16): e202200524. |
42 | CHANG Xin, FAN Min, GU Chaofan, et al. Selective extraction of transition metals from spent LiNi x Co y Mn1- x- y O2 cathode via regulation of coordination environment[J]. Angewandte Chemie International Edition, 2022, 61(24): e202202558. |
43 | TANG Shujie, FENG Jiali, SU Runchang, et al. New bifunctional deep-eutectic solvent for in situ selective extraction of valuable metals from spent lithium batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(26): 8423-8432. |
44 | TANG Shujie, ZHANG Mei, GUO Min. A novel deep-eutectic solvent with strong coordination ability and low viscosity for efficient extraction of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 975-985. |
45 | CHEN Yu, WANG Yanlong, BAI Yue, et al. Mild and efficient recovery of lithium-ion battery cathode material by deep eutectic solvents with natural and cheap components[J]. Green Chemical Engineering, 2022. . |
46 | CHEN Yu, WANG Yanlong, BAI Yue, et al. Significant improvement in dissolving lithium-ion battery cathodes using novel deep eutectic solvents at low temperature[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(38): 12940-12948. |
47 | HUANG Fengyu, LI Taibai, YAN Xiaohui, et al. Ternary deep eutectic solvent (DES) with a regulated rate-determining step for efficient recycling of lithium cobalt oxide[J]. ACS Omega, 2022, 7(13): 11452-11459. |
48 | WANG Shubin, ZHANG Zuotai, LU Zhouguang, et al. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries[J]. Green Chemistry, 2020, 22(14): 4473-4482. |
49 | WANG Hongmin, LI Mengran, GARG Sahil, et al. Cobalt electrochemical recovery from lithium cobalt oxides in deep eutectic choline Chloride+Urea solvents[J]. ChemSusChem, 2021, 14(14): 2972-2983. |
50 | SURIYANARAYANAN S, BABU M P, MURUGAN R, et al. Highly efficient recovery and recycling of cobalt from spent lithium-ion batteries using an N-methylurea-acetamide nonionic deep eutectic solvent[J]. ACS Omega, 2023, 8(7): 6959-6967. |
51 | Sylvain DÉSILETS, BROUSSEAU Patrick, CHAMBERLAND Daniel, et al. Analyses of the thermal decomposition of urea nitrate at high temperature[J]. Thermochimica Acta, 2011, 521(1/2): 59-65. |
52 | NAND Peeters, KOEN Binnemans, Riaño SOFÍA. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents[J]. Green Chemistry, 2020, 22(13): 4210-4221. |
53 | XU Zhiwen, SHAO Huaishuang, ZHAO Qinxin, et al. Use of microwave-assisted deep eutectic solvents to recycle lithium manganese oxide from Li-ion batteries[J]. JOM, 2021, 73(7): 2104-2110. |
54 | LIU Mengshun, MA Wenjun, ZHANG Xu, et al. Recycling lithium and cobalt from LIBs using microwave-assisted deep eutectic solvent leaching technology at low-temperature[J]. Materials Chemistry and Physics, 2022, 289: 126466. |
55 | MA Wenjun, LIU Mengshun, ZHANG Xu, et al. An efficient and precipitant-free approach to selectively recover lithium cobalt oxide made for cathode materials using a microwave-assisted deep eutectic solvent[J]. Energy & Fuels, 2023, 37(1): 724-734. |
56 | WANG Mengmeng, LIU Kang, XU Zibo, et al. Selective extraction of critical metals from spent lithium-ion batteries[J]. Environmental Science & Technology, 2023, 57(9): 3940-3950. |
57 | LIAO Yanshun, GONG Shanshan, WANG Guange, et al. A novel ternary deep eutectic solvent for efficient recovery of critical metals from spent lithium-ion batteries under mild conditions[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108627. |
58 | JAFARI M, SHAFAIE S Z, ABDOLLAHI H, et al. A green approach for selective ionometallurgical separation of lithium from spent Li-ion batteries by deep eutectic solvent (DES): Process optimization and kinetics modeling[J]. Mineral Processing and Extractive Metallurgy Review, 2023, 44(3): 218-230. |
59 | ZENG Guisheng, YAO Junxia, LIU Chunli, et al. Simultaneous recycling of critical metals and aluminum foil from waste LiNi1/3Co1/3Mn1/3O2 cathode via ethylene glycol-citric acid system[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16133-16142. |
60 | 李丽, 姚莹, 郁亚娟. 锂离子电池回收与资源化技术[M]. 北京: 科学出版社, 2021. |
LI Li, YAO Ying, YU Yajuan. Sustainable recycling and resource utilization technology of lithium ion batteries[M]. Beijing: Science Press, 2021. | |
61 | NAYAKA G P, ZHANG Yingjie, DONG Peng, et al. An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102854. |
62 | PATELI I M, DANA T, ALABDULLAH S S, et al. The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents[J]. Green Chemistry, 2020, 22(16): 5476-5486. |
63 | ABBOTT A P, COLLINS J, DALRYMPLE I, et al. Processing of electric arc furnace dust using deep eutectic solvents[J]. Australian Journal of Chemistry, 2009, 62(4): 341. |
64 | POURGHASEMI H A, NADERI R, KOWSARI E, et al. Corrosion behavior of mild steel in H2SO4 solution with 1, 4-di[1′-methylene-3′-methyl imidazolium bromide]-benzene as an ionic liquid[J]. Corrosion Science, 2016, 107: 96-106. |
65 | WANG Yuqing, AN Ning, WEN Lei, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 391-419. |
66 | NAND Peeters, KWINTEN Janssens, DE VOS Dirk, et al. Choline chloride-ethylene glycol based deep-eutectic solvents as lixiviants for cobalt recovery from lithium-ion battery cathode materials: Are these solvents really green in high-temperature processes?[J]. Green Chemistry, 2022, 24(17): 6685-6695. |
67 | AMPHLETT J T, CHOI S. The effect of increasing water content on transition metal speciation in deep eutectic solvents[J]. Journal of Molecular Liquids, 2021, 332: 115845. |
68 | MENG Qi, ZHANG Yingjie, DONG Peng. A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects[J]. Waste Management, 2018, 71: 372-380. |
69 | HE Lipo, SUN Shuying, SONG Xingfu, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171-181. |
70 | KUMARI A, JHA M K, PATHAK D D. An innovative environmental process for the treatment of scrap Nd-Fe-B magnets[J]. Journal of Environmental Management, 2020, 273: 111063. |
71 | JHA M K, KUMARI A, JHA A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. |
72 | WU Caibin, LI Bensheng, YUAN Chengfang, et al. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching[J]. Waste Management, 2019, 93: 153-161. |
73 | ALHASHIM S H, BHATTACHARYYA S, TROMER R, et al. Mechanistic study of lithium-ion battery cathode recycling using deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(18): 6914-6922. |
[1] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[4] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[5] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[6] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[7] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[8] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[9] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[10] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[11] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[12] | 胡亚飞, 冯自平, 田佳垚, 黄冲, 宋文吉. 燃料驱动无电热泵系统的节能模拟与运行经济性分析[J]. 化工进展, 2023, 42(3): 1217-1227. |
[13] | 陈绍勤, 胡玲, 雷天涯, 王蓉, 舒建成, 陈梦君. 机械活化强化锌焙砂中锌的浸出[J]. 化工进展, 2023, 42(3): 1649-1658. |
[14] | 张群力, 黄昊天, 张琳, 赵文强, 张秋月. 喷淋式烟气源热泵冷凝余热回收系统性能分析[J]. 化工进展, 2023, 42(2): 650-657. |
[15] | 王毅斌, 冯敬武, 谭厚章, 李良钰. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展, 2023, 42(2): 985-999. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |