1 |
PIASECKA Magdalena. Heat transfer research on enhanced heating surfaces in flow boiling in a minichannel and pool boiling[J]. Annals of Nuclear Energy, 2014, 73: 282-293.
|
2 |
SEO Seok BIN, BANG In Cheol. Acoustic analysis on the dynamic motion of vapor-liquid interface for the identification of boiling regime and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1138-1146.
|
3 |
LIANG Gangtao, CHEN Yang, WANG Jiajun, et al. Experiments and modeling of boiling heat transfer on hybrid-wettability surfaces[J]. International Journal of Multiphase Flow, 2021, 144: 103810.
|
4 |
DENG Zilong, LIU Xiangdong, WU Suchen, et al. Pool boiling heat transfer enhancement by bi-conductive surfaces[J]. International Journal of Thermal Sciences, 2021, 167: 107041.
|
5 |
CHEN Lin, JIN Fengchu, LI Jiahua, et al. Hybrid model of thin film boiling: Insights into the unique behavior and ultrahigh heat flux[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121702.
|
6 |
戴勇, 罗小平, 方振鑫. EHD强化微细槽道沸腾传热实验研究[J]. 中南大学学报(自然科学版), 2011, 42(5): 1316-1320.
|
|
DAI Yong, LUO Xiaoping, FANG Zhenxin. EHD experimental research on boiling heat transfer in micro-channels[J]. Journal of Central South University (Science and Technology), 2011, 42(5): 1316-1320.
|
7 |
DIAO Y H, GUO L, LIU Y, et al. Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves[J]. International Journal of Heat and Mass Transfer, 2014, 78: 371-379.
|
8 |
AHANGAR ZONOUZI Sajjad, AMINFAR Habib, MOHAMMADPOURFARD Mousa. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF[J]. Applied Thermal Engineering, 2019, 151: 11-25.
|
9 |
DI BARI Sergio, ROBINSON Anthony J. Adiabatic bubble growth in uniform DC electric fields[J]. Experimental Thermal and Fluid Science, 2013, 44: 114-123.
|
10 |
陈烁, 王太, 苏硕, 等. 均匀电场中气泡上升特性的实验研究[J]. 力学学报, 2021, 53(10): 2736-2744.
|
|
CHEN Shuo, WANG Tai, SU Shuo, et al. Experimental investigation on rising behavior of single bubble under the effect of uniform dc electric field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2736-2744.
|
11 |
MAWET S, CAPS H, DORBOLO S. Deformation of soap bubbles in uniform electric fields[J]. Physical Review Fluids, 2021, 6(4): 043603.
|
12 |
JALAAL M, KHORSHIDI B, ESMAEILZADEH E, et al. Behavior of a single bubble in a nonuniform D.C. electric field[J]. Chemical Engineering Communications, 2010, 198(1): 19-32.
|
13 |
杨世杰, 王军锋, 张伟, 等. 非均匀电场作用下气泡生长及运动特性[J]. 化工进展, 2021, 40(1): 48-56.
|
|
YANG Shijie, WANG Junfeng, ZHANG Wei, et al. Characteristics of bubble generation and motion under non-uniform electric field[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 48-56.
|
14 |
ANDALIB Sahar, VAJDI HOKMABAD Babak, ESMAEILZADEH Esmaeil. Study of a single coarse bubble behavior in the presence of D.C. electric field[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 604-617.
|
15 |
LANBARAN Davoud Abdi, TAQIZADEH Rasoul, ESMAILZADEH Esmail, et al. Experimental investigation on pair bubble columns under high voltage DC electric filed[J]. Journal of Electrostatics, 2020, 106: 103456.
|
16 |
Mählmann Stefan, PAPAGEORGIOU Demetrios T. Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field[J]. Theoretical and Computational Fluid Dynamics, 2009, 23(5): 375-399.
|
17 |
YANG Qingzhen, LI Ben Q, SHAO Jinyou, et al. A phase field numerical study of 3D bubble rising in viscous fluids under an electric field[J]. International Journal of Heat and Mass Transfer, 2014, 78: 820-829.
|
18 |
RAHMAT A, TOFIGHI N, YILDIZ M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method[J]. International Journal of Heat and Fluid Flow, 2016, 62: 313-323.
|
19 |
WANG Yanning, SUN Dongliang, ZHANG Aolin, et al. Numerical simulation of bubble dynamics in the gravitational and uniform electric fields[J]. Numerical Heat Transfer A: Applications, 2017, 71(10): 1034-1051.
|
20 |
王悦柔, 王军峰, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究[J]. 力学学报, 2020, 52(1): 31-39.
|
|
WANG Yuerou, WANG Junfeng, LIU Hailong. Numerical simulation on bubble rising behaviors under electric field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39.
|
21 |
ZHU Changsheng, MA Fanglan, LEI Peng, et al. Comparison between level set and phase field method for simulating bubble movement behavior under electric field[J]. Chinese Journal of Physics, 2021, 71: 385-396.
|
22 |
SUNDER Shyam, TOMAR Gaurav. Numerical simulations of bubble formation from submerged needles under non-uniform direct current electric field[J]. Physics of Fluids, 2013, 25(10): 102104.
|
23 |
MCGRANAGHAN G J, ROBINSON A J. The mechanisms of heat transfer during convective boiling under the influence of AC electric fields[J]. International Journal of Heat and Mass Transfer, 2014, 73: 376-388.
|
24 |
SUNDER Shyam, TOMAR Gaurav. Numerical simulations of bubble formation from a submerged orifice and a needle: The effects of an alternating electric field[J]. European Journal of Mechanics - B/Fluids, 2016, 56: 97-109.
|
25 |
陈帅, 孙东亮, 齐亚强, 等. 交流电场作用下附着在壁面上气泡的动力学研究[J]. 北京石油化工学院学报, 2019, 27(2): 35-43, 55.
|
|
CHEN Shuai, SUN Dongliang, QI Yaqiang, et al. Study of the dynamic behavior of a bubble attached to a wall under AC electric field[J]. Journal of Beijing Institute of Petrochemical Technology, 2019, 27(2): 35-43, 55.
|
26 |
王太, 陈烁, 李典, 等. 均匀直流电场作用下贴壁气泡变形特性[J]. 中南大学学报(自然科学版), 2021, 52(12): 4531-4539.
|
|
WANG Tai, CHEN Shuo, LI Dian, et al. Investigation on deformation behavior of single bubble attached to solid wall under effect of uniform DC electric field[J]. Journal of Central South University (Science and Technology), 2021, 52(12): 4531-4539.
|
27 |
SUN D L, TAO W Q. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 645-655.
|
28 |
WANG Tai, LI Huixiong, ZHAO Jianfu, et al. Numerical simulation of quasi-static bubble formation from a submerged orifice by the axisymmetric VOSET method[J]. Microgravity Science and Technology, 2019, 31(3): 279-292.
|
29 |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
|
30 |
OSHER Stanley, FEDKIW Ronald. Level set methods and dynamic implicit surfaces[M]. New York: Springer New York, 2003.
|