化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3623-3633.DOI: 10.16085/j.issn.1000-6613.2022-1549
谢志伟(), 吴张永(), 朱启晨, 蒋佳骏, 梁天祥, 刘振阳
收稿日期:
2022-08-22
修回日期:
2022-10-18
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
吴张永
作者简介:
谢志伟(1996—),男,硕士研究生,研究方向为流体传动与控制。E-mail:xzw13698@126.com。
基金资助:
XIE Zhiwei(), WU Zhangyong(), ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang
Received:
2022-08-22
Revised:
2022-10-18
Online:
2023-07-15
Published:
2023-08-14
Contact:
WU Zhangyong
摘要:
以矿物油为基液的油基磁流体存在环境污染、难以生物降解的问题。植物油具有绿色环保、生物降解性强等优点。本文以植物油为基液,利用两步法制备了Ni0.5Zn0.5Fe2O4磁流体,应用正交实验研究了沉降稳定性,采用单一变量法研究了黏度特性及磁黏特性。其结果表明:以丙酮为分散剂,质量分数为11%,Ni0.5Zn0.5Fe2O4质量分数为2.4%时,沉降稳定性较佳;在零磁场/磁场条件下,黏度随温度的升高而降低;黏度随分散剂和Ni0.5Zn0.5Fe2O4质量分数的增大而先增大后减小,分别在分散剂质量分数为11%时和Ni0.5Zn0.5Fe2O4质量分数为2.4%时出现拐点;黏度随磁场强度的增大而增大,呈非牛顿流体的特征。植物油是磁流体基液的一种理想选择,植物油基磁流体有较好的沉降稳定性,相较于矿物油基磁流体具有独特的优势,未来可将植物油基磁流体作为一种新型的环保工作介质。
中图分类号:
谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633.
XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633.
元素范围 | 归一化质量百分比/% | |||||
---|---|---|---|---|---|---|
1#1 | 1#2 | 1#3 | 1#4 | 1#5 | 平均占比 | |
O | 28.65 | 29.34 | 28.17 | 27.59 | 28.94 | 28.54 |
Fe | 43.28 | 41.78 | 41.74 | 48.35 | 43.75 | 43.78 |
Ni | 13.31 | 13.22 | 14.45 | 10.64 | 13.12 | 12.95 |
Zn | 14.76 | 15.66 | 15.64 | 13.42 | 14.18 | 14.73 |
表1 Ni0.5Zn0.5Fe2O4颗粒元素组成比例
元素范围 | 归一化质量百分比/% | |||||
---|---|---|---|---|---|---|
1#1 | 1#2 | 1#3 | 1#4 | 1#5 | 平均占比 | |
O | 28.65 | 29.34 | 28.17 | 27.59 | 28.94 | 28.54 |
Fe | 43.28 | 41.78 | 41.74 | 48.35 | 43.75 | 43.78 |
Ni | 13.31 | 13.22 | 14.45 | 10.64 | 13.12 | 12.95 |
Zn | 14.76 | 15.66 | 15.64 | 13.42 | 14.18 | 14.73 |
样品 | 分散剂种类 | 沉降系数K | |||||||
---|---|---|---|---|---|---|---|---|---|
1d | 2d | 4d | 6d | 8d | 10d | 12d | 14d | ||
1 | 油酸 | 1.0 | 0.563 | 0.20 | 0.10 | 0.05 | 0 | 0 | 0 |
2 | 丙酮 | 1.0 | 0.97 | 0.96 | 0.95 | 0.95 | 0.92 | 0.875 | 0.85 |
3 | 正丁醇 | 1.0 | 0.588 | 0.375 | 0.15 | 0.10 | 0.08 | 0.05 | 0.03 |
4 | 无分散剂 | 1.0 | 0.975 | 0.95 | 0.95 | 0.93 | 0.875 | 0.775 | 0.687 |
5 | 聚乙二醇400 | 1.0 | 0.15 | 0.13 | 0.10 | 0.10 | 0.08 | 0.05 | 0.02 |
6 | 聚乙二醇600 | 1.0 | 0.935 | 0.17 | 0.12 | 0.10 | 0.10 | 0.05 | 0.03 |
表2 分散剂种类与磁流体沉降稳定性的关系
样品 | 分散剂种类 | 沉降系数K | |||||||
---|---|---|---|---|---|---|---|---|---|
1d | 2d | 4d | 6d | 8d | 10d | 12d | 14d | ||
1 | 油酸 | 1.0 | 0.563 | 0.20 | 0.10 | 0.05 | 0 | 0 | 0 |
2 | 丙酮 | 1.0 | 0.97 | 0.96 | 0.95 | 0.95 | 0.92 | 0.875 | 0.85 |
3 | 正丁醇 | 1.0 | 0.588 | 0.375 | 0.15 | 0.10 | 0.08 | 0.05 | 0.03 |
4 | 无分散剂 | 1.0 | 0.975 | 0.95 | 0.95 | 0.93 | 0.875 | 0.775 | 0.687 |
5 | 聚乙二醇400 | 1.0 | 0.15 | 0.13 | 0.10 | 0.10 | 0.08 | 0.05 | 0.02 |
6 | 聚乙二醇600 | 1.0 | 0.935 | 0.17 | 0.12 | 0.10 | 0.10 | 0.05 | 0.03 |
样品 | 丙酮质量分数/% | 沉降系数K | |||||||
---|---|---|---|---|---|---|---|---|---|
1d | 2d | 4d | 6d | 8d | 10d | 12d | 14d | ||
1 | 7 | 1.0 | 0.97 | 0.96 | 0.95 | 0.945 | 0.92 | 0.90 | 0.86 |
2 | 8 | 1.0 | 0.97 | 0.96 | 0.95 | 0.95 | 0.925 | 0.91 | 0.88 |
3 | 9 | 1.0 | 0.98 | 0.96 | 0.96 | 0.95 | 0.93 | 0.91 | 0.89 |
4 | 10 | 1.0 | 0.98 | 0.97 | 0.96 | 0.96 | 0.93 | 0.92 | 0.90 |
5 | 11 | 1.0 | 0.99 | 0.97 | 0.97 | 0.96 | 0.94 | 0.92 | 0.90 |
6 | 12 | 1.0 | 0.98 | 0.97 | 0.955 | 0.95 | 0.925 | 0.91 | 0.90 |
表3 丙酮质量分数与磁流体沉降稳定性的关系
样品 | 丙酮质量分数/% | 沉降系数K | |||||||
---|---|---|---|---|---|---|---|---|---|
1d | 2d | 4d | 6d | 8d | 10d | 12d | 14d | ||
1 | 7 | 1.0 | 0.97 | 0.96 | 0.95 | 0.945 | 0.92 | 0.90 | 0.86 |
2 | 8 | 1.0 | 0.97 | 0.96 | 0.95 | 0.95 | 0.925 | 0.91 | 0.88 |
3 | 9 | 1.0 | 0.98 | 0.96 | 0.96 | 0.95 | 0.93 | 0.91 | 0.89 |
4 | 10 | 1.0 | 0.98 | 0.97 | 0.96 | 0.96 | 0.93 | 0.92 | 0.90 |
5 | 11 | 1.0 | 0.99 | 0.97 | 0.97 | 0.96 | 0.94 | 0.92 | 0.90 |
6 | 12 | 1.0 | 0.98 | 0.97 | 0.955 | 0.95 | 0.925 | 0.91 | 0.90 |
样品 | Ni0.5Zn0.5Fe2O4质量分数/% | 沉降系数K | |||||||
---|---|---|---|---|---|---|---|---|---|
1d | 2d | 4d | 6d | 8d | 10d | 12d | 14d | ||
1 | 0.48 | 1.0 | 0.99 | 0.97 | 0.97 | 0.96 | 0.94 | 0.92 | 0.90 |
2 | 0.96 | 1.0 | 0.99 | 0.975 | 0.97 | 0.96 | 0.93 | 0.90 | 0.875 |
3 | 1.43 | 1.0 | 0.992 | 0.98 | 0.97 | 0.96 | 0.95 | 0.93 | 0.915 |
4 | 1.9 | 1.0 | 0.992 | 0.98 | 0.975 | 0.97 | 0.95 | 0.94 | 0.92 |
5 | 2.4 | 1.0 | 0.995 | 0.99 | 0.98 | 0.98 | 0.97 | 0.95 | 0.943 |
6 | 2.82 | 1.0 | 0.96 | 0.90 | 0.825 | 0.775 | 0.725 | 0.65 | 0.40 |
表4 Ni0.5Zn0.5Fe2O4质量分数与磁流体沉降稳定性的关系
样品 | Ni0.5Zn0.5Fe2O4质量分数/% | 沉降系数K | |||||||
---|---|---|---|---|---|---|---|---|---|
1d | 2d | 4d | 6d | 8d | 10d | 12d | 14d | ||
1 | 0.48 | 1.0 | 0.99 | 0.97 | 0.97 | 0.96 | 0.94 | 0.92 | 0.90 |
2 | 0.96 | 1.0 | 0.99 | 0.975 | 0.97 | 0.96 | 0.93 | 0.90 | 0.875 |
3 | 1.43 | 1.0 | 0.992 | 0.98 | 0.97 | 0.96 | 0.95 | 0.93 | 0.915 |
4 | 1.9 | 1.0 | 0.992 | 0.98 | 0.975 | 0.97 | 0.95 | 0.94 | 0.92 |
5 | 2.4 | 1.0 | 0.995 | 0.99 | 0.98 | 0.98 | 0.97 | 0.95 | 0.943 |
6 | 2.82 | 1.0 | 0.96 | 0.90 | 0.825 | 0.775 | 0.725 | 0.65 | 0.40 |
1 | 何彦, 王优强, 莫君, 等. 甘油基Fe3O4磁流体制备及摩擦学性能研究[J]. 功能材料, 2022, 53(7): 7013-7018. |
HE Yan, WANG Youqiang, MO Jun, et al. Preparation and tribological properties of glyceryl Fe3O4 magnetic fluid[J]. Journal of Functional Materials, 2022, 53(7): 7013-7018, 7026. | |
2 | 郑国华, 李丽, 马永良. 乙二醇基磁流体的实验研究[J]. 化学研究与应用, 2021, 33(12): 2393-2398. |
ZHENG Guohua, LI Li, MA Yongliang. Experiment research of glycol-based magnetic fluid[J]. Chemical Research and Application, 2021, 33(12): 2393-2398. | |
3 | KONG Xiangdong, YANG Shaojie, MU Xueyu. Summary of research on magnetic fluid and its inclination sensor[J]. Journal of Engineering Research and Reports, 2021, 21(6): 52-57. |
4 | CHEKANOV V, KOVALENKO A. Experimental and theoretical study of an autowave process in a magnetic fluid[J]. International Journal of Molecular Sciences, 2022, 23(3): 1642. |
5 | CHOI Junsok, Ki Tae NAM, KIM Sehyun, et al. Synergistic effects of nonmagnetic carbon nanotubes on the performance and stability of magnetorheological fluids containing carbon nanotube-Co0.4Fe0.4Ni0.2 nanocomposite particles[J]. Nano Letters, 2021, 21(12): 4973-4980. |
6 | LIU Gaoyu, GAO Fei, LIAO Wei Hsin. Magnetorheological damper with multi-grooves on piston for damping force enhancement[J]. Smart Materials and Structures, 2020, 30(2): 025007. |
7 | 恭飞, 吴张永, 朱启晨, 等. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(S1): 126-131. |
GONG Fei, WU Zhangyong, ZHU Qichen, et al. Experimental study on the lubricity of NiFe2O4 magnetic fluid[J]. Materials Reports, 2019, 33(S1): 126-131. | |
8 | 门阔, 赵鸿滨, 魏峰, 等. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064. |
Kuo MEN, ZHAO Hongbin, WEI Feng, et al. Research progress of magnetic sensing materials and devices[J]. Materials Reports, 2021, 35(15): 15056-15064. | |
9 | 张彤, 李德才, 李艳文. 磁性液体密封与迷宫密封组合密封的结构设计及优化[J]. 机械工程学报, 2022, 58(9): 172-181. |
ZHANG Tong, LI Decai, LI Yanwen. Design and optimization of combined magnetic fluid seal and labyrinth seal[J]. Journal of Mechanical Engineering, 2022, 58(9): 172-181. | |
10 | LI Jingbing, DAI Qingwen, HUANG Wei, et al. Feasibility study of magnetic fluid support and lubrication behaviors on micro magnet arrays[J]. Tribology International, 2020, 150: 106407. |
11 | JIAO Feng, LI Qian, JIAO Yanying, et al. Heat transfer of ferrofluids with magnetoviscous effects[J]. Journal of Molecular Liquids, 2021, 328: 115404. |
12 | 臧徐忠, 石尔, 傅俊萍, 等. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419. |
ZANG Xuzhong, SHI Er, FU Junping, et al. A review of magnetic field effects on flow and heat transfer in magnetic nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5410-5419. | |
13 | YANG Yang, XU Zhaodong, XU Yanwei, et al. Analysis on influence of the magnetorheological fluid microstructure on the mechanical properties of magnetorheological dampers[J]. Smart Materials and Structures, 2020, 29(11): 115025. |
14 | CHEN Fan, ZHANG Chongfeng, YANG Xiaolong. Numerical analysis and experimental verification of magnetic fluid sealing for air cylinder in Aerospace Engineering[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 66(4): 581-597. |
15 | LEI Jiajie, LUO Zhumei, QING Shan, et al. Effect of surfactants on the stability, rheological properties, and thermal conductivity of Fe3O4 nanofluids[J]. Powder Technology, 2022, 399: 117197. |
16 | CAO Qianhui, ZHANG Zhili, YU Jun, et al. Research on the effect of different surfactants on fluidity of water-based magnetic fluid[J]. Smart Materials and Structures, 2020, 29(3): 035028. |
17 | 刘晓红, 赵东林, 姚冉冉, 等. 超顺磁纳米Fe3O4磁性流体的制备及其在交变磁场中的发热性能[J]. 北京化工大学学报(自然科学版), 2016, 43(1): 40-44. |
LIU Xiaohong, ZHAO Donglin, YAO Ranran, et al. Preparation and inductive heating properties of a superparamagnetic nano Fe3O4 magnetic fluid in an AC magnetic field for localized hyperthermia[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2016, 43(1): 40-44. | |
18 | SHEN Chen, ODA Y, MATSUBARA M, et al. Magnetorheological fluids with surface-modified iron oxide magnetic particles with controlled size and shape[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20581-20588. |
19 | SUSAN-RESIGA D, MALAESCU I, MARINICA O, et al. Magnetorheological properties of a kerosene-based ferrofluid with magnetite particles hydrophobized in the absence of the dispersion medium[J]. Physica B: Condensed Matter, 2020, 587: 412150. |
20 | NI Jing, CUI Zhi, HE Lihua, et al. Reinforced lubrication of vegetable oils with nano-particle additives in broaching[J]. Journal of Manufacturing Processes, 2021, 70: 518-528. |
21 | 彭锐涛, 贺湘波, 童佳威, 等. 大豆油基Al2O3纳米流体的悬浮稳定性及抗磨减摩性能研究[J]. 功能材料, 2020, 51(8): 8194-8199. |
PENG Ruitao, HE Xiangbo, TONG Jiawei, et al. Investigation on suspension stability and anti-wear and anti-friction properties of soybean oil based Al2O3 nanofluid[J]. Journal of Functional Materials, 2020, 51(8): 8194-8199. | |
22 | RASHIN M N, HEMALATHA J. Viscosity studies on novel copper oxide-coconut oil nanofluid[J]. Experimental Thermal and Fluid Science, 2013, 48: 67-72. |
23 | CHEHADE W, BASMA H, ABDALLAH A M, et al. Synthesis and magneto-optical studies of novel Ni0.5Zn0.5Fe2O4/Zn0.95Co0.05O nanocomposite as a candidate for photocatalytic applications[J]. Ceramics International, 2022, 48(1): 1238-1255. |
24 | CHOUDHARY B L, KUMARI N, KUMARI J, et al. Relaxation mechanism in Ni0.5Zn0.5Fe2O4 nanocrystalline ferrite at a lower temperature[J]. Materials Letters, 2021, 304: 130731. |
25 | BAJOREK A, BERGER C, DULSKI M, et al. Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 1-21. |
26 | WU Jie, PEI Lei, XUAN Shouhu, et al. Particle size dependent rheological property in magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 2016, 408: 18-25. |
27 | 张磊, 焦万丽. 交变磁场诱导自组装超结构Ni0 .5Zn 0.5Fe2O4/PAA复合纳米线[J]. 人工晶体学报, 2012, 41(2): 523-527. |
ZHANG Lei, JIAO Wanli. Self-assembly of superstructure Ni0.5Zn0.5Fe2O4/PAA CompositeNanowire induced by alternating magnetic field[J]. Journal of Synthetic Crystals, 2012, 41(2): 523-527. | |
28 | 陈文, 吴张永, 张莲芝, 等. 环烷基NiFe2O4磁流体的制备及有磁场沉降稳定性[J]. 化工进展, 2019, 38(6): 2665-2673. |
CHEN Wen, WU Zhangyong, ZHANG Lianzhi, et al. Preparation of oil-based NiFe2O4 magnetic fluid and stability of magnetic field settlement[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2665-2673. | |
29 | 朱启晨, 吴张永, 蔡晓明, 等. 温度对Ni0.5Zn0.5Fe2O4磁流体黏度的相关性[J]. 材料科学与工程学报, 2020, 38(6): 989-994. |
ZHU Qichen, WU Zhangyong, CAI Xiaoming, et al. Experimental study on the correlation between temperature and viscosity of Ni0.5Zn0.5Fe2O4 magnetic fluid[J]. Journal of Materials Science and Engineering, 2020, 38(6): 989-994. | |
30 | 金谷. 表面活性剂化学[M]. 2版. 合肥: 中国科学技术大学出版社, 2013. |
JIN Gu. Surfactant chemistry[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2013. | |
31 | ROSA A P, CUNHA F R. The influence of dipolar particle interactions on the magnetization and the rotational viscosity of ferrofluids[J]. Physics of Fluids, 2019, 31(5): 052006. |
32 | 刘雪莉. 磁性液体磁黏特性及其对微压差传感器动态特性影响的研究[D]. 天津: 河北工业大学, 2014. |
LIU Xueli. Study of magnetovisous characterisitic of magnetic fluid and its effect on dynamic performance of micro differential pressure sensor[D]. Tianjin: Hebei University of Technology, 2014. | |
33 | 尹林茂, 范智超, 孟媛, 等. 静磁场下磁流变液微结构演化的实验研究[J]. 西南大学学报(自然科学版), 2011, 33(5): 155-160. |
YIN Linmao, FAN Zhichao, MENG Yuan, et al. Experimental investigation of the evolution of microstructure in magnetorheological fluids under a static magnetic field[J]. Journal of Southwest University (Natural Science Edition), 2011, 33(5): 155-160. | |
34 | BURY P, ČERNOBILA F, VEVERIČÍK M, et al. SAW investigation of structural changes in oil-based magnetic fluids[J]. Acta Physica Polonica A, 2020, 137(5): 964-966. |
35 | WANG Ningning, LIU Xinhua, SUN Shuaishuai, et al. Microscopic characteristics of magnetorheological fluids subjected to magnetic fields[J]. Journal of Magnetism and Magnetic Materials, 2020, 501: 166443. |
36 | LI Wenyi, ZHANG Zhili, LI Decai. Rheological properties of silicon oil-based magnetic fluid with magnetic nanoparticles (MNPs)-multiwalled carbon nanotube (MWNT)[J]. Smart Materials and Structures, 2019, 28(6): 065023. |
37 | 于丽. 高聚物与纳米流体的流变行为及其流动传质特性研究[D]. 大连: 大连理工大学, 2020. |
YU Li. On the rheological properties and transport behaviors of polymer aqueous solutions and nanofluids[D]. Dalian: Dalian University of Technology, 2020. | |
38 | LI Zhenkun, LI Decai, DONG Jiahao, et al. Study of temperature influence on the rheological behavior of magnetic fluids[J]. Journal of Magnetism and Magnetic Materials, 2022, 545: 168757. |
39 | IVANOV A O, ZUBAREV A. Chain formation and phase separation in ferrofluids: The influence on viscous properties[J]. Materials, 2020, 13(18): 3956. |
40 | A Yu ZUBAREV, L Yu ISKAKOVA. To the theory of rheological properties of ferrofluids: Influence of drop-like aggregates[J]. Physica A: Statistical Mechanics and Its Applications, 2004, 343: 65-80. |
41 | SAHA P, MUKHERJEE S, MANDAL K. Rheological response of magnetic fluid containing Fe3O4 nano structures[J]. Journal of Magnetism and Magnetic Materials, 2019, 484: 324-328. |
42 | 杨健健, 晏华, 代军, 等. 磁流变液材料的性能与应用综述[J]. 化工进展, 2017, 36(1): 247-260. |
YANG Jianjian, YAN Hua, DAI Jun, et al. A review on magnetorheological fluid: Properties and applications[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 247-260. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[3] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[4] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[5] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[6] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[7] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[8] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[9] | 朱启晨, 吴张永, 王志强, 蒋佳骏, 李翔. 低温下硅油基纳米磁流体沉降稳定性与黏度特性[J]. 化工进展, 2023, 42(10): 5101-5110. |
[10] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[11] | 李鲁, 鲍穗, 张李明, 汪然, 陶正红, 杨兴祥. 卡拉胶-魔芋胶复合凝胶基香精微胶囊的制备与表征[J]. 化工进展, 2022, 41(S1): 376-381. |
[12] | 蒋华义, 胡娟, 齐红媛, 游琰真, 王玉龙, 武哲. 磁性纳米粒子类型和质量浓度对微波热解含油污泥的影响[J]. 化工进展, 2022, 41(7): 3908-3914. |
[13] | 孙娜娜, 孙会娜, 沈莉莎, 苏瑞宇, 赵超. 磁性纳米颗粒-微波辐射对稠油O/W乳状液的协同破乳[J]. 化工进展, 2022, 41(6): 3127-3137. |
[14] | 李娟娟, 张天永, 李祥高. 电泳显示用高质量铁锰黑纳米分散系的构建[J]. 化工进展, 2022, 41(6): 3178-3185. |
[15] | 刘鸿益, 杨光星, 余皓. 电磁感应加热用于可持续催化技术的研究进展[J]. 化工进展, 2022, 41(3): 1440-1452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |