1 |
MO Yiming, RUGHOOBUR Girish, NAMBIAR Anirudh M K, et al. A multifunctional microfluidic platform for high-throughput experimentation of electroorganic chemistry[J]. Angewandte Chemie International Edition, 2020, 59(47): 20890-20894.
|
2 |
MI Zhenrui, LU Tingting, ZHANG Jianan, et al. Synthesis of pure silica zeolites[J]. Chemical Research in Chinese Universities, 2022, 38(1): 9-17.
|
3 |
AKPORIAYE Duncan E, DAHL Ivar M, KARLSSON Arne, et al. Combinatorial approach to the hydrothermal synthesis of zeolites[J]. Angewandte Chemie International Edition, 1998, 37(5): 609-611.
|
4 |
VAN DE WATER Leon G A, VAN DER WAAL Jan C, JANSEN Jacobus C, et al. Ge-ZSM-5: The simultaneous incorporation of Ge and Al into ZSM-5 using a parallel synthesis approach[J]. The Journal of Physical Chemistry B, 2003, 107(38): 10423-10430.
|
5 |
MOLINER M, SERRA J M, CORMA A, et al. Application of artificial neural networks to high-throughput synthesis of zeolites[J]. Microporous and Mesoporous Materials, 2005, 78(1): 73-81.
|
6 |
JANSSEN K P F, PAUL J S, SELS B F, et al. High-throughput preparation and testing of ion-exchanged zeolites[J]. Applied Surface Science, 2007, 254(3): 699-703.
|
7 |
CHEN Xutao, LI Zhinian, CHEN Yu’ang, et al. High-throughput synthesis of AlPO and SAPO zeolites by ink jet printing[J]. Chemical Communications, 2023, 59(15): 2157-2160.
|
8 |
BANERJEE Rahul, PHAN Anh, WANG Bo, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943.
|
9 |
FAN Chuan, WANG Lirong, LUO Yong, et al. Cost-effective screening of antimicrobial performance of multiple metal-organic frameworks via a droplet-based batch synthesis platform[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6476-6482.
|
10 |
FAN Chuan, LUO Yong, TIAN Meng, et al. Integrated microsystem toward high-throughput automated green synthesis and Raman enhancement performance screening of noble-Metal@Cu-MOF[J]. Advanced Functional Materials, 2023, 33(11): 2211845.
|
11 |
Sylwia GŁOWNIAK, Barbara SZCZĘŚNIAK, CHOMA Jerzy, et al. Advances in microwave synthesis of nanoporous materials[J]. Advanced Materials, 2021, 33(48): 2103477.
|
12 |
WU Xiaofei, BAO Zongbi, YUAN Bin, et al. Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation[J]. Microporous and Mesoporous Materials, 2013, 180: 114-122.
|
13 |
MOOSAVI Seyed Mohamad, CHIDAMBARAM Arunraj, TALIRZ Leopold, et al. Capturing chemical intuition in synthesis of metal-organic frameworks[J]. Nature Communications, 2019, 10: 539.
|
14 |
The Ky VO, LE Van Nhieu, YOO Kye Sang, et al. Facile synthesis of UiO-66(Zr) using a microwave-assisted continuous tubular reactor and its application for toluene adsorption[J]. Crystal Growth & Design, 2019, 19(9): 4949-4956.
|
15 |
TADDEI Marco, STEITZ Daniel Antti, VAN BOKHOVEN Jeroen Anton, et al. Continuous-flow microwave synthesis of metal-organic frameworks: A highly efficient method for large-scale production[J]. Chemistry: A European Journal, 2016, 22(10): 3245-3249.
|
16 |
Roman MORSCHHÄUSER, KRULL Matthias, KAYSER Christoph, et al. Microwave-assisted continuous flow synthesis on industrial scale[J]. Green Processing and Synthesis, 2012, 1(3): 281-290.
|
17 |
SHANG Luoran, CHENG Yao, ZHAO Yuanjin. Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040.
|
18 |
WU Qirui, WANG Xiaohong, LIU Jinfeng, et al. Effect of additives on the growth of HKUST-1 crystals synthesized by microfluidic chips with concentration gradient[J]. Biomicrofluidics, 2020, 14(3): 034110.
|
19 |
WU Songting, XIN Zhong, ZHAO Shicheng, et al. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules[J]. Nano Research, 2019, 12(11): 2736-2742.
|
20 |
TAN Liangxiao, TAN Bien. Hypercrosslinked porous polymer materials: Design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356.
|
21 |
BAI Yang, WILBRAHAM Liam, SLATER Benjamin J, et al. Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory[J]. Journal of the American Chemical Society, 2019, 141(22): 9063-9071.
|
22 |
GREENAWAY R L, SANTOLINI V, BENNISON M J, et al. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis[J]. Nature Communications, 2018, 9: 2849.
|
23 |
ZHANG Zihao, SCHOTT Jennifer A, LIU Miaomiao, et al. Prediction of carbon dioxide adsorption via deep learning[J]. Angewandte Chemie International Edition, 2019, 58(1): 259-263.
|
24 |
WANG Song, LI Yi, DAI Sheng, et al. Prediction by convolutional neural networks of CO2/N2 selectivity in porous carbons from N2 adsorption isotherm at 77 K[J]. Angewandte Chemie International Edition, 2020, 59(44): 19645-19648.
|
25 |
XIE Tian, GROSSMAN Jeffrey C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Physical Review Letters, 2018, 120(14): 145301.
|
26 |
HU Jianbo, CUI Jiyu, GAO Bin, et al. Machine-learning-assisted exploration of anion-pillared metal organic frameworks for gas separation[J]. Matter, 2022, 5(11): 3901-3911.
|
27 |
MOLINER Manuel, Yuriy ROMÁN-LESHKOV, CORMA Avelino. Machine learning applied to zeolite synthesis: The missing link for realizing high-throughput discovery[J]. Accounts of Chemical Research, 2019, 52(10): 2971-2980.
|
28 |
BURGER Benjamin, MAFFETTONE Phillip M, GUSEV Vladimir V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241.
|
29 |
ZHAO Haitao, CHEN Wei, HUANG Hao, et al. A robotic platform for the synthesis of colloidal nanocrystals[J]. Nature Synthesis, 2023, 2(6): 505-514.
|
30 |
ZHU Qing, ZHANG Fei, HUANG Yan, et al. An all-round AI-Chemist with a scientific mind[J]. National Science Review, 2022, 9(10): nwac190.
|
31 |
JIANG Yibin, SALLEY Daniel, SHARMA Abhishek, et al. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials[J]. Science Advances, 2022, 8(40): eabo2626.
|
32 |
EPPS Robert W, BOWEN Michael S, VOLK Amanda A, et al. Artificial chemist: An autonomous quantum dot synthesis bot[J]. Advanced Materials, 2020, 32(30): 2001626.
|