化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1934-1943.DOI: 10.16085/j.issn.1000-6613.2022-1111
叶海星1(), 陈宇昊1, 陈仪2, 孙海翔1(), 牛青山2()
收稿日期:
2022-06-14
修回日期:
2022-07-22
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
孙海翔,牛青山
作者简介:
叶海星(1998—),男,硕士研究生,研究方向为高分子膜材料。E-mail:z20140094@s.upc.edu.cn。
基金资助:
YE Haixing1(), CHEN Yuhao1, CHEN Yi2, SUN Haixiang1(), NIU Qingshan2()
Received:
2022-06-14
Revised:
2022-07-22
Online:
2023-04-25
Published:
2023-05-08
Contact:
SUN Haixiang, NIU Qingshan
摘要:
随着新能源等行业的快速发展,锂的需求量急剧增加。纳滤膜分离作为一种具有能耗低、成本低、绿色环保等优点的盐湖提锂方法,受到越来越广泛的关注。该方法能够减小卤水中的镁锂比,降低后续提锂难度,在盐湖提锂行业拥有巨大的潜力。但由于发展较晚,理论体系尚不完善,推动工业应用的进程缓慢。本文从分离机理入手,分析了近年来用于提升镁锂分离纳滤膜性能的改性方法,包括表面接枝改性、两相溶液添加剂、新单体设计、基膜改性和界面聚合(IP)工艺优化五种方法。同时,阐述了各种改性方法对纳滤膜结构和性质的影响。分析表明:表面改性的方法可以改变膜表面电荷但无法精确调控膜的孔径;添加剂可以减小水传输阻力但膜的耐受性有待考察;单体设计和基膜改性能够有效地提升选择性和渗透性;工艺优化较为复杂,进行工业放大有一定难度。总的来说,纳滤膜在盐湖提锂行业的发展十分具有前景,配合其他提锂工艺,以期实现绿色提锂、高效提锂。
中图分类号:
叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943.
YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943.
改性方法 | 膜材料 | 盐截留/% | 渗透性 /L∙m-2∙h-1∙MPa-1 | 镁锂分离性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
MgCl2 | LiCl | 溶质浓度 /mg∙L-1 | 原料液 (Mg2+/Li+) | 分离系数 | ||||
表面改性 | PSF/PIP-TMC-PEI | — | — | — | 2000 | 150 | 12.37 | [ |
PES/SWCNT/ PIP-TMC-PEI | 98.5 | 46.2 | 120.0 | 2000 | 21.3 | 33.4 | [ | |
PES/PIP-TMC-DETA | 94.1 | 36.7 | 170.0 | 2000 | — | — | [ | |
PSF/DDA&PIP -TMC-(CMPI)-PEI | 97.10 | 32.0 | — | 1000 | — | — | [ | |
NF270/PDA-PEI | 86.7 | 5.3 | 66.3 | — | 30 | 7.15 | [ | |
DL/PDA-PEI | 81.7 | 7.1 | 42.2 | — | 30 | 5.08 | [ | |
DK/PDA-PEI | 98.6 | 16.0 | 33.7 | — | 30 | 59.54 | [ | |
Ultem-TMC-BPEI-EDTA | 84.6 | 68.1 | 6.0 | 10000 | 24 | 9.2 | [ | |
PAN/PIP-TMC-[MimAP][Tf2N] | 83.8 | 24.4 | 63.0 | 2100 | 20 | 8.12 | [ | |
PSF/PEI-TMC-HMTAB | 93.3 | — | 163.2 | 2000 | 50 | 10.1 | [ | |
PSF/PEI-TMC-DAIB | 95.8 | — | — | 10500 | 20 | 10 | [ | |
PSF/PEI-TMC-QEDTP | 95.8 | 55.0 | 211.5 | 2000 | 120 | 15.6 | [ | |
PSF/PEI-TMC-QPBD | 92.0 | — | 136.0 | 2000 | 50 | 5.88 | [ | |
添加剂 | PES/PIP@MWCNTs&PEI-TMC | 96.9 | 20.3 | 140.0 | 2000 | 21.4 | 16.5 | [ |
PES/γ-CD&PEI-TMC | — | — | 48.6 | 2000 | 30 | 10.8 | [ | |
PES/PHF&PIP-TMC | 89.9 | 16.3 | 67.0 | 2000 | 21.4 | 13.1 | [ | |
PES/GQDs-NH3&PEI-TMC | — | — | 119.4 | 2000 | 20 | 21.9 | [ | |
PAN/UiO-66-NH2&PEI-TMC | — | — | 306.0 | 2000 | 20 | 36.9 | [ | |
PAN/POSS-NH2&PIP-TMC | 98.0 | — | — | 1000 | 1.56 | 43.9 | [ | |
PES/PDA-C3N4&DAPP-TMC | 95.7 | 36.8 | — | 2000 | — | — | [ | |
PES/BHC-CN&BAPP-TMC | 97.4 | — | — | 2000 | 73 | 23.9 | [ | |
PES/PIP-TMC&AB2 | 99.1 | 35.2 | 127.3 | 2000 | 21.4 | 35.7 | [ | |
单体设计 | PAN/DAPP-TMC | 70.4 | 21.8 | — | 2000 | 20 | 2.6 | [ |
PES/PEI-TMC | 94.8 | 30.6 | 50.2 | 2000 | 20 | 20 | [ | |
PES/ GQDs-NH2-TMC | 94.7 | 22.9 | 119.8 | 2000 | 30 | 14.4 | [ | |
基膜改性 | PES&GO/PEI-TMC | — | — | 111.5 | 2000 | 20 | 16.13 | [ |
PES&MWCNTs-COOK/PEI-TMC | — | — | 114.6 | 2000 | 20 | 58.66 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 41.7 | 2000 | 30 | 12.15 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 34.0 | 2000 | 60 | 5.84 | [ | |
PSF/UIO-66-NH2/PIP-TMC | 97.9 | -66.7 | — | 10500 | 30.6 | 78.6 | [ | |
工艺优化 | PES/EDA-TMC(GLIP) | 98.3 | — | 43.0 | 2100 | 20 | 28 | [ |
PES/Gu-MPD | 91.6 | 32.3 | 162.0 | 2000 | 23 | 8.0 | [ |
表1 已报道镁锂分离复合纳滤膜性能对比
改性方法 | 膜材料 | 盐截留/% | 渗透性 /L∙m-2∙h-1∙MPa-1 | 镁锂分离性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
MgCl2 | LiCl | 溶质浓度 /mg∙L-1 | 原料液 (Mg2+/Li+) | 分离系数 | ||||
表面改性 | PSF/PIP-TMC-PEI | — | — | — | 2000 | 150 | 12.37 | [ |
PES/SWCNT/ PIP-TMC-PEI | 98.5 | 46.2 | 120.0 | 2000 | 21.3 | 33.4 | [ | |
PES/PIP-TMC-DETA | 94.1 | 36.7 | 170.0 | 2000 | — | — | [ | |
PSF/DDA&PIP -TMC-(CMPI)-PEI | 97.10 | 32.0 | — | 1000 | — | — | [ | |
NF270/PDA-PEI | 86.7 | 5.3 | 66.3 | — | 30 | 7.15 | [ | |
DL/PDA-PEI | 81.7 | 7.1 | 42.2 | — | 30 | 5.08 | [ | |
DK/PDA-PEI | 98.6 | 16.0 | 33.7 | — | 30 | 59.54 | [ | |
Ultem-TMC-BPEI-EDTA | 84.6 | 68.1 | 6.0 | 10000 | 24 | 9.2 | [ | |
PAN/PIP-TMC-[MimAP][Tf2N] | 83.8 | 24.4 | 63.0 | 2100 | 20 | 8.12 | [ | |
PSF/PEI-TMC-HMTAB | 93.3 | — | 163.2 | 2000 | 50 | 10.1 | [ | |
PSF/PEI-TMC-DAIB | 95.8 | — | — | 10500 | 20 | 10 | [ | |
PSF/PEI-TMC-QEDTP | 95.8 | 55.0 | 211.5 | 2000 | 120 | 15.6 | [ | |
PSF/PEI-TMC-QPBD | 92.0 | — | 136.0 | 2000 | 50 | 5.88 | [ | |
添加剂 | PES/PIP@MWCNTs&PEI-TMC | 96.9 | 20.3 | 140.0 | 2000 | 21.4 | 16.5 | [ |
PES/γ-CD&PEI-TMC | — | — | 48.6 | 2000 | 30 | 10.8 | [ | |
PES/PHF&PIP-TMC | 89.9 | 16.3 | 67.0 | 2000 | 21.4 | 13.1 | [ | |
PES/GQDs-NH3&PEI-TMC | — | — | 119.4 | 2000 | 20 | 21.9 | [ | |
PAN/UiO-66-NH2&PEI-TMC | — | — | 306.0 | 2000 | 20 | 36.9 | [ | |
PAN/POSS-NH2&PIP-TMC | 98.0 | — | — | 1000 | 1.56 | 43.9 | [ | |
PES/PDA-C3N4&DAPP-TMC | 95.7 | 36.8 | — | 2000 | — | — | [ | |
PES/BHC-CN&BAPP-TMC | 97.4 | — | — | 2000 | 73 | 23.9 | [ | |
PES/PIP-TMC&AB2 | 99.1 | 35.2 | 127.3 | 2000 | 21.4 | 35.7 | [ | |
单体设计 | PAN/DAPP-TMC | 70.4 | 21.8 | — | 2000 | 20 | 2.6 | [ |
PES/PEI-TMC | 94.8 | 30.6 | 50.2 | 2000 | 20 | 20 | [ | |
PES/ GQDs-NH2-TMC | 94.7 | 22.9 | 119.8 | 2000 | 30 | 14.4 | [ | |
基膜改性 | PES&GO/PEI-TMC | — | — | 111.5 | 2000 | 20 | 16.13 | [ |
PES&MWCNTs-COOK/PEI-TMC | — | — | 114.6 | 2000 | 20 | 58.66 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 41.7 | 2000 | 30 | 12.15 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 34.0 | 2000 | 60 | 5.84 | [ | |
PSF/UIO-66-NH2/PIP-TMC | 97.9 | -66.7 | — | 10500 | 30.6 | 78.6 | [ | |
工艺优化 | PES/EDA-TMC(GLIP) | 98.3 | — | 43.0 | 2100 | 20 | 28 | [ |
PES/Gu-MPD | 91.6 | 32.3 | 162.0 | 2000 | 23 | 8.0 | [ |
1 | SWAIN Basudev. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
2 | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921. |
WANG Qi, ZHAO Youjing, LIU Yang, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921. | |
3 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503. |
JIANG Chenxiao, CHEN Binglun, ZHANG Dongyu, et al. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503. | |
4 | Geological Survey U.S.. Mineral commodity summaries 2022[R]. Virginia, U.S. Geological Survey, 2022. |
5 | 伍倩, 刘喜方, 郑绵平, 等. 我国盐湖锂资源开发现状、存在问题及对策[J]. 现代化工, 2017, 37(5): 1-5. |
WU Qian, LIU Xifang, ZHENG Mianping, et al. Present situation, existing problems and countermeasures of development of salt lake lithium resources in China[J]. Modern Chemical Industry, 2017, 37(5): 1-5. | |
6 | PAUL M, JONS S D. Chemistry and fabrication of polymeric nanofiltration membranes: A review[J]. Polymer, 2016, 103: 417-456. |
7 | ZHOU Yong, YU Sanchuan, GAO Congjie, et al. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance[J]. Separation and Purification Technology, 2009, 66(2): 287-294. |
8 | BOWEN W R, WELFOOT J S. Modelling of membrane nanofiltration—Pore size distribution effects[J]. Chemical Engineering Science, 2002, 57(8): 1393-1407. |
9 | XU Fang, DAI Liheng, WU Yulin, et al. Li+/Mg2+ separation by membrane separation: The role of the compensatory effect[J]. Journal of Membrane Science, 2021, 636: 119542. |
10 | 李志录, 王敏, 赵有璟, 等. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
LI Zhilu, WANG Min, ZHAO Youjing, et al. Effects of membrane characteristics for lithium extraction[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5061-5072. | |
11 | RICHARDS L A, SCHÄFER A I, RICHARDS B S, et al. The importance of dehydration in determining ion transport in narrow pores[J]. Small, 2012, 8(11): 1701-1709. |
12 | SAHU Subin, DI VENTRA Massimiliano, ZWOLAK Michael. Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores[J]. Nano Letters, 2017, 17(8): 4719-4724. |
13 | TANSEL Berrin. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86: 119-126. |
14 | YAROSHCHUK A E. Rejection mechanisms of NF membranes[J]. Membrane Technology, 1998, 1998(100): 9-12. |
15 | WADEKAR S S, VIDIC R D. Influence of active layer on separation potentials of nanofiltration membranes for inorganic ions[J]. Environmental Science & Technology, 2017, 51(10): 5658-5665. |
16 | DONNAN F G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology[J]. Journal of Membrane Science, 1995, 100(1): 45-55. |
17 | GONG Lingyan, OUYANG Wei, LI Zirui, et al. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization[J]. Journal of Membrane Science, 2018, 556: 34-41. |
18 | YAO Yuxing, CHEN Xiang, YAN Chong, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie, 2021, 133: 4136-4143. |
19 | 杨哲, 戴若彬, 文越, 等. 新型纳滤膜在水处理与水回用中的研究进展[J]. 环境工程, 2021, 39(7): 1-12. |
YANG Zhe, DAI Ruobin, WEN Yue, et al. Recent progress of nanofiltration membrane in water treatment and water reuse[J]. Environmental Engineering, 2021, 39(7): 1-12. | |
20 | LU Dan, MA Tao, LIN Saisai, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+ [J]. Journal of Membrane Science, 2021, 635: 119504. |
21 | YANG Zhao, FANG Wangxi, WANG Zhenyi, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. Journal of Membrane Science, 2021, 620: 118862. |
22 | HUANG Benqing, TANG Yongjian, GAO Anran, et al. Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal[J]. Journal of Membrane Science, 2021, 640: 119834. |
23 | QI Yawei, ZHU Lifang, SHEN Xin, et al. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J]. Separation and Purification Technology, 2019, 222: 117-124. |
24 | ASHRAF M A, WANG J F, WU B H, et al. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA-PEI composite nanofiltration membrane[J]. Journal of Applied Polymer Science, 2020, 137(47): 49549. |
25 | LI Wei, SHI Changkun, ZHOU Ayang, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
26 | WU Huanhuan, LIN Yakai, FENG Wenyan, et al. A novel nanofiltration membrane with[MimAP][Tf2N]ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science, 2020, 603: 117997. |
27 | LUO Hao, PENG Huawen, ZHAO Qiang. High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes[J]. Applied Surface Science, 2022, 579: 152161. |
28 | PENG Huawen, ZHAO Qiang. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, 31(14): 2009430. |
29 | XU Yang, PENG Huawen, LUO Hao, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. Desalination, 2022, 526: 115519. |
30 | FENG Yuxi, PENG Huawen, ZHAO Qiang. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine[J]. Separation and Purification Technology, 2022, 280: 119848. |
31 | ZHANG Haizhen, XU Zhenliang, DING Hao, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+ [J]. Desalination, 2017, 420: 158-166. |
32 | ZHAO Ying, LI Nan, SHI Jie, et al. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions[J]. Separation and Purification Technology, 2022, 286: 120419. |
33 | SHEN Qian, XU Sunjie, XU Zhenliang, et al. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution[J]. Journal of Applied Polymer Science, 2019, 136(41): 48029. |
34 | XU Ping, HONG Jun, XU Zhenzhen, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Separation and Purification Technology, 2021, 258: 118042. |
35 | AGHILI F, GHOREYSHI A A, BRUGGEN B, et al. A highly permeable UiO-66-NH2/polyethyleneimine thin-film nanocomposite membrane for recovery of valuable metal ions from brackish water[J]. Process Safety and Environmental Protection, 2021, 151: 244-256. |
36 | ZHAO Junhui, YOU Xinda, WANG Guangzhe, et al. Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration[J]. Journal of Membrane Science, 2022, 644: 120051. |
37 | BI Qiuyan, ZHANG Chao, LIU Jiandong, et al. A nanofiltration membrane prepared by PDA-C3N4 for removal of divalent ions[J]. Water Science and Technology, 2020, 81(2): 253-264. |
38 | BI Qiuyan, ZHANG Chao, LIU Jiandong, et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties[J]. Separation and Purification Technology, 2021, 257: 117959. |
39 | HU P, YUAN B B, NIU Q J, et al. Modification of polyamide nanofiltration membrane with ultra-high multivalent cations rejections and mono-/divalent cation selectivity[J]. Desalination, 2022, 527: 115553. |
40 | LI Xianhui, ZHANG Chunjin, ZHANG Shuning, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
41 | XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
42 | GUO Changsheng, QIAN Xiaoming, TIAN Feng, et al. Amino-rich carbon quantum dots ultrathin nanofiltration membranes by double “one-step” methods: Breaking through trade-off among separation, permeation and stability[J]. Chemical Engineering Journal, 2021, 404: 127144. |
43 | XU Ping, HONG Jun, QIAN Xiaoming, et al. “Bridge” graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation[J]. Desalination, 2020, 488: 114522. |
44 | XU Ping, HONG Jun, XU Zhenzhen, et al. Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction[J]. Separation and Purification Technology, 2021, 270: 118796. |
45 | GUO Changsheng, LI Nan, QIAN Xiaoming, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “Drag” effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567. |
46 | YUAN Bingbing, WANG Ning, ZHAO Siheng, et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl–/SO4 2– [J]. Desalination, 2022, 538: 115929. |
47 | WU Mingbang, YE Hao, ZHU Zhiyuan, et al. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation[J]. Journal of Membrane Science, 2022, 644: 119942. |
48 | XU Ping, HONG Jun, XU Zhenzhen, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Separation and Purification Technology, 2021, 258: 118042. |
49 | 曹阳, 任玉灵, 郭世伟, 等. 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J]. 化工进展, 2020, 39(6): 2125-2134. |
CAO Yang, REN Yuling, GUO Shiwei, et al. Research progress on process optimization for preparation of polyamide thin-film composite membrane by interfacial polymerization[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2125-2134. | |
50 | WANG Li, REHMAN Danyal, SUN Pengfei, et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16906-16915. |
51 | ZHANG Liufu, ZHANG Ruolin, JI Miaozhou, et al. Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization[J]. Journal of Membrane Science, 2021, 636: 119478. |
[1] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[2] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[3] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[4] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[5] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[6] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[9] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[10] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[11] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[12] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
[13] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[14] | 殷鹏镇, 吴芹, 黎汉生. 甲基芳烃液相选择性催化氧化催化剂研究进展[J]. 化工进展, 2023, 42(6): 2916-2943. |
[15] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |