1 |
LI Meichun, WU Qinglin, MOON Robert J, et al. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications[J]. Advanced Materials, 2021, 33(21): e2006052.
|
2 |
DUTTA Saikat, WU Kevin C W. Enzymatic breakdown of biomass: Enzyme active sites, immobilization, and biofuel production[J]. Green Chemistry, 2014, 16(11): 4615-4626.
|
3 |
LYND Lee R, VAN ZYL Willem H, MCBRIDE John E, et al. Consolidated bioprocessing of cellulosic biomass: An update[J]. Current Opinion in Biotechnology, 2005, 16(5): 577-583.
|
4 |
ZHANG Peiqian, MA Yuanyuan, CUI Mei, et al. Effect of sugars on the real-time adsorption of expansin on cellulose[J]. Biomacromolecules, 2020, 21(5): 1776-1784.
|
5 |
LEE Dae-Seok, LEE Yoon-Gyo, CHO Eun Jin, et al. Hydrolysis pattern analysis of xylem tissues of woody plants pretreated with hydrogen peroxide and acetic acid: Rapid saccharification of softwood for economical bioconversion[J]. Biotechnology for Biofuels, 2021, 14(1): 37.
|
6 |
DU Liping, CUI Xinyu, LI Hongxuan, et al. Enhancing the enzymatic hydrolysis efficiency of lignocellulose assisted by artificial fusion enzyme of swollenin-xylanase[J]. Industrial Crops and Products, 2021, 173:114106.
|
7 |
刘南, 祁峰, 李力, 等. 纤维素降解辅助蛋白及其作用机理研究进展[J]. 化工进展, 2018, 37(3): 1118-1129.
|
|
LIU Nan, QI Feng, LI Li, et al. Auxiliary proteins for boosting enzymatic hydrolysis of cellulose and the action mechanisms[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1118-1129.
|
8 |
ZHANG Ruiqin. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3229-3243.
|
9 |
KIM In Jung, LEE Hee Jin, CHOI In-Geol, et al. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase[J]. Applied Microbiology and Biotechnology, 2014, 98(20): 8469-8480.
|
10 |
KIM Ji Eun, Sung Il JOO, SEO Ji Hyun, et al. Antioxidant and α-glucosidase inhibitory effect of Tartary buckwheat extract obtained by the treatment of different solvents and enzymes[J]. Journal of the Korean Society of Food Science and Nutrition, 2009, 38(8): 989-995.
|
11 |
VARROT Annabelle, Vivian L Y YIP, LI Yunsong, et al. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: Structural insight into specificity for phospho-β-D-glucosides[J]. Journal of Molecular Biology, 2005, 346(2): 423-435.
|
12 |
BOUCHER Jeffrey I, JACOBOWITZ Joseph R, BECKETT Brian C, et al. An atomic-resolution view of neofunctionalization in the evolution of api complexan lactate dehydrogenases[J]. eLife, 2014, 3:02304.
|
13 |
HALL Michael D, LEVITT David G, BANASZAK Leonard J. Crystal structure of Escherichia coli malate dehydrogenase[J]. Journal of Molecular Biology, 1992, 226(3): 867-882.
|
14 |
BURLEY Stephen K, BHIKADIYA Charmi, BI Chunxiao, et al. RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D[J]. Protein Science: a Publication of the Protein Society, 2022, 31(1): 187-208.
|
15 |
ROBERT Xavier, GOUET Patrice. Deciphering key features in protein structures with the new ENDscript server[J]. Nucleic Acids Research, 2014, 42(W1): W320-W324.
|
16 |
YUAN Shuguang, H C Stephen CHAN, HU Zhenquan. Using PyMOL as a platform for computational drug design[J].WIREs Computational Molecular Science, 2017, 7(2):e1298.
|
17 |
LODGE Jacinta A, MAIER Timm, LIEBL Wolfgang, et al. Crystal structure of thermotoga maritima α-glucosidase AglA defines a new clan of NAD+-dependent glycosidases[J]. Journal of Biological Chemistry, 2003, 278(21): 19151-19158.
|
18 |
NCBI Resource Coordinators. Database resources of the national center for biotechnology information[J]. Nucleic Acids Research, 2018, 46(D1): D8-D13.
|
19 |
FORLI Stefano, HUEY Ruth, PIQUE Michael E, et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite[J]. Nature Protocols, 2016, 11(5): 905-919.
|
20 |
MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31(3): 426-428.
|
21 |
LI Z, XIAN L, LI Q, et al. Study on the properties of xylanase from Streptomyces ipomoeae synergistically digesting sugarcane bagasse[J]. Renesable Energy Resources, 2021, 39(12): 1576-1582.
|
22 |
KIM Seong H, LEE Christopher M, Kafle Kabindra. Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG[J]. Korean Journal of Chemical Engineering, 2013, 30(12): 2127-2141.
|
23 |
MITCHELL Alex L, ATTWOOD Teresa K, BABBITT Patricia C, et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations[J]. Nucleic Acids Research, 2019, 47(D1): D351-D360.
|
24 |
ROSADI Imam, INDRADY Feldiana Tuesrilia, KARINA Karina, et al. Evaluation effects of ascorbic acid leads to activate and induce osteogenic protein marker expression: In silico and in-vitro study[J]. Biomedical Research and Therapy, 2022, 9(1): 4832-4841.
|
25 |
DING Sunjia, LIU Xiaoqing, HAKULINEN Nina, et al. Boosting enzymatic degradation of cellulose using a fungal expansin: Structural insight into the pretreatment mechanism[J]. Bioresource Technology, 2022, 358: 127434.
|
26 |
LI Rong, SUN Yunze, ZHOU Yihao, et al. A novel decrystallizing protein CxEXL22 from Arthrobotrys sp. CX1 capable of synergistically hydrolyzing cellulose with cellulases[J]. Bioresources and Bioprocessing, 2021, 8(1): 1-12.
|
27 |
KIM Eun Sil, LEE Hee Jin, BANG Won Gi, et al. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose[J]. Biotechnology and Bioengineering, 2009, 102(5): 1342-1353.
|
28 |
QIN Yimin, TAO Heng, LIU Youyan, et al. A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose[J]. Journal of Biotechnology, 2013, 168(1): 24-31.
|
29 |
Chir JIUN-LY, Wan CHIN-FENG, Chou CHIEN-HUNG, et al. Hydrolysis of cellulose in synergistic mixtures of β-glucosidase and endo/exocellulase Cel9A from Thermobifida fusca [J]. Biotechnology Letters, 2011, 33(4): 777-782.
|
30 |
王修胜, 于占春, 张小希, 等. 工业纤维素酶水解效率的影响因素分析[J]. 生物质化学工程, 2010, 44(5): 1-7.
|
|
WANG Xiusheng, YU Zhanchun, ZHANG Xiaoxi, et al. Analysis on effect factors of hydrolysis efficiency of industrial cellulases[J]. Biomass Chemical Engineering, 2010, 44(5): 1-7.
|
31 |
MA Xiaoyu, GAO Ming, LI Yuan, et al. Production of cellulase by Aspergillus niger through fermentation of spent mushroom substance: Glucose inhibition and elimination approaches[J]. Process Biochemistry, 2022, 122: 26-35.
|
32 |
SEGATO Fernando, DAMÁSIO André R L, DE LUCAS Rosymar C, et al. Genomics review of holocellulose deconstruction by aspergilli [J]. Microbiology and Molecular Biology Reviews, 2014, 78(4): 588-613.
|
33 |
WOOD T M, MCCRAE S I. The purification and properties of the C1 component of Trichoderma koningii cellulase[J]. The Biochemical Journal, 1972, 128(5): 1183-1192.
|
34 |
SALOHEIMO Markku, PALOHEIMO Marja, HAKOLA Satu, et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials[J]. European Journal of Biochemistry, 2002, 269(17): 4202-4211.
|
35 |
BLUMER-SCHUETTE Sara E, BROWN Steven D, SANDER Kyle B, et al. Thermophilic lignocellulose deconstruction[J]. FEMS Microbiology Reviews, 2014, 38(3): 393-448.
|
36 |
CIOLACU D, CIOLACU F, POPA V. Amorphous cellulose—Structure and characterization[J]. Cellulose Chemistry and Technology, 2011, 45(1/2): 13-21.
|
37 |
HAN Yejun, CHEN Hongzhang. Synergism between corn stover protein and cellulase[J]. Enzyme and Microbial Technology, 2007, 41(5): 638-645.
|