化工进展 ›› 2023, Vol. 42 ›› Issue (1): 457-468.DOI: 10.16085/j.issn.1000-6613.2022-0527
收稿日期:
2022-03-31
修回日期:
2022-06-04
出版日期:
2023-01-25
发布日期:
2023-02-20
作者简介:
刘雅娟(1974—),女,博士,副教授,硕士生导师,研究方向为废水生物与膜处理。E-mail:dtdxliuyajuan@139.com。
基金资助:
Received:
2022-03-31
Revised:
2022-06-04
Online:
2023-01-25
Published:
2023-02-20
摘要:
浸没式粉末活性炭-好氧膜生物反应器(powdered activated carbon-aerobic membrane bioreactors,PAC-AMBRs)是一种利用PAC吸附性、微生物降解性和膜分离特性的新型废水处理技术。本文重点分析了近20年来浸没式PAC-AMBRs系统直接投加PAC缓解膜污染机制的研究成果,探讨了PAC通过对污泥絮体和溶解性有机物的综合影响缓解膜污染的机制,分析了PAC投加量和补充率对膜污染的影响。通过分析可知PAC缓解膜污染是一个综合作用的结果。以PAC为载体形成的污泥絮体在膜表面形成结构疏松和抗压性强的滤饼层,不仅能有效降低滤饼层阻力(cake resistance,Rc),还可以作为自成型动态膜截留溶解性有机物和悬浮微生物等来减少此类污染物造成的膜污染。PAC通过吸附和/或表面附着的微生物降解溶解性有机物的协同作用降低其造成的过滤阻力。定期排出和补充一定量的PAC可以提高缓解膜污染的效率。
中图分类号:
刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468.
LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468.
膜材料、形式与膜孔径 | PAC平均粒径或 范围/μm | PAC投加量 /g·L-1 | 初始絮状污泥粒径 /μm | PAC辅助形成的污泥絮体粒径/μm | 膜污染控制效果 | 参考文献 |
---|---|---|---|---|---|---|
PVDF平板膜 MWCO①=140kDa | 76~88 | 0.75 | 56.0 | 84 | Rt和Rc分别降低17.5%和24.0% | [ |
聚乙烯中空纤维膜 膜孔径0.1μm | 150~250 | 1 | — | 401 | Rt和Rc分别降低16.0%和18.4% | [ |
陶瓷平板膜 膜孔径100nm | 149 | 20 | 48 | 69±6 | 过滤周期延长1.5倍 平均膜污染速率降低33% | [ |
尼龙滤网 膜孔径30μm | 8~35 | 2 | 98.6 | 150 | 过滤周期延长2.5倍 | [ |
PVDF平板膜 膜孔径0.2μm | 125~150 | 1.2 | 47.0 | 56 | Rt和Rc分别降低43.9%和53.9% 过滤周期延长1.8倍 | [ |
外层尼龙滤网 膜孔径75μm | 29.4 | 1 | 26.1 | 60.6 | 稳定水通量提高25% | [ |
PVDF平板膜 膜孔径0.1μm | 15 | 0.5 | 72.2 | 69.8 | 临界通量提高19% | [ |
聚丙烯腈中空纤维膜 膜孔径0.5μm | 14.88±3.93 67.60±2.70 | 5 5 | 30.20±0.50 | 38.15±1.52 90.05±0.52 | 过滤周期延长5.7倍 过滤周期延长9.4倍 | [ |
聚乙烯中空纤维膜 膜孔径0.1μm | 28.64 | 3.6 | 6.7 8 | 过滤周期延长1.7倍 过滤周期延长2.5倍 | [ | |
氯化聚乙烯平板膜 膜孔径0.4μm | 100~250 | 1 | 45 | 62 | 连续运行110d后, TMP降低9.3% | [ |
聚醚砜膜 膜孔径0.05μm | 75 | 2 | 70.6 | 84.7~86.5 | 运行145d的水通量提高 1.5~2.8倍 | [ |
聚丙烯腈中空纤维膜 膜孔径0.5μm | 24.5 | 1 3 5 | 133.9 | 67.9 55.5 38.2 | TMP增高速率降低98.8% TMP增高速率降低99.1% TMP增高速率降低99.3% | [ |
表1 PAC粒径对污泥絮体粒径和膜污染的影响
膜材料、形式与膜孔径 | PAC平均粒径或 范围/μm | PAC投加量 /g·L-1 | 初始絮状污泥粒径 /μm | PAC辅助形成的污泥絮体粒径/μm | 膜污染控制效果 | 参考文献 |
---|---|---|---|---|---|---|
PVDF平板膜 MWCO①=140kDa | 76~88 | 0.75 | 56.0 | 84 | Rt和Rc分别降低17.5%和24.0% | [ |
聚乙烯中空纤维膜 膜孔径0.1μm | 150~250 | 1 | — | 401 | Rt和Rc分别降低16.0%和18.4% | [ |
陶瓷平板膜 膜孔径100nm | 149 | 20 | 48 | 69±6 | 过滤周期延长1.5倍 平均膜污染速率降低33% | [ |
尼龙滤网 膜孔径30μm | 8~35 | 2 | 98.6 | 150 | 过滤周期延长2.5倍 | [ |
PVDF平板膜 膜孔径0.2μm | 125~150 | 1.2 | 47.0 | 56 | Rt和Rc分别降低43.9%和53.9% 过滤周期延长1.8倍 | [ |
外层尼龙滤网 膜孔径75μm | 29.4 | 1 | 26.1 | 60.6 | 稳定水通量提高25% | [ |
PVDF平板膜 膜孔径0.1μm | 15 | 0.5 | 72.2 | 69.8 | 临界通量提高19% | [ |
聚丙烯腈中空纤维膜 膜孔径0.5μm | 14.88±3.93 67.60±2.70 | 5 5 | 30.20±0.50 | 38.15±1.52 90.05±0.52 | 过滤周期延长5.7倍 过滤周期延长9.4倍 | [ |
聚乙烯中空纤维膜 膜孔径0.1μm | 28.64 | 3.6 | 6.7 8 | 过滤周期延长1.7倍 过滤周期延长2.5倍 | [ | |
氯化聚乙烯平板膜 膜孔径0.4μm | 100~250 | 1 | 45 | 62 | 连续运行110d后, TMP降低9.3% | [ |
聚醚砜膜 膜孔径0.05μm | 75 | 2 | 70.6 | 84.7~86.5 | 运行145d的水通量提高 1.5~2.8倍 | [ |
聚丙烯腈中空纤维膜 膜孔径0.5μm | 24.5 | 1 3 5 | 133.9 | 67.9 55.5 38.2 | TMP增高速率降低98.8% TMP增高速率降低99.1% TMP增高速率降低99.3% | [ |
膜材料、 形式与孔径 | 操作条件 | PAC粒径与投加方式 | PAC投加量 /g·L-1 | 废水及其特征 | 有机物去除效率 | 膜污染控制效果 | 参考文献 |
---|---|---|---|---|---|---|---|
PVDF平板膜,MWCO=140kDa | HRT=4d 恒流过滤 J=30LMH | 75~80μm 一次性 | 0.75 | 市政污水处理厂二沉池出水,TOC=10.7mg/L | TOC:62.7%,TOC去除率提高3.9倍 | 膜过滤时间延长2倍,Rt降低17.4% | [ |
聚氯乙烯平板膜,膜孔径0.4μm | HRT=12h | — 一次性 | 4 | 煤气化废水, COD①=2.27g/L | COD①:93%,sEPS减少67.7% | 过滤周期延长1.25倍,连续运行50d后,TMP下降34% | [ |
PVDF中空纤维膜,膜孔径0.2μm | 恒流过滤 J=15LMH | <200目 一次性 | 1 | 合成废水, COD=398mg/L | COD:95.4%,SMP降低62.2% | Rt和Rc分别降低2.0%和9.1%,膜污染速率降低12.6%~36.4% | [ |
2 | COD:95%,SMP减少69.4% | Rt和Rc分别降低5.1%和16.4%,膜污染速率降低16.1%~38.8% | |||||
4 | COD:94.3%,SMP减少50.6% | Rt和Rc分别降低4.7%和18.8%,膜污染速率降低7.1%~19.9% | |||||
陶瓷平板膜,膜孔径100nm | DO②=1.5~2.5mg/L 恒流过滤 J=15LMH | 149μm 定期 | 20 | 合成市政污水, COD=200~220mg/L | COD:(99.5±0.1)%,SMP和EPS降低77%和61% | 过滤周期延长1.5倍,平均膜污染速率降低33% | [ |
氯化聚乙烯平板膜,膜孔径0.4μm | SRT=30h,HRT=19h SAD③=1.5m3/(m2·h) 恒流过滤 J=8LMH | 0.1~0.25mm 定期 | 1 | 化妆品废水, COD=9.6~10g/L | COD:(95.4±0.6)%,SMP减少6.9% | 临界水通量增加25%,TMP降低 | [ |
聚醚砜膜,膜孔径0.05μm | 曝气速率=8~10L/min,恒压过滤 TMP=20kPa | 75μm 一次性 | 2 | 化学法合成依托度酸 制药废水,COD=18g/L | COD:85%~98%,sEPS减少28%~88% | 运行145d的水通量提高1.5~2.8倍 | [ |
PVDF中空纤维膜,膜孔径0.2μm | HRT=6h,曝气速率=120L/h,恒流过滤J=16LMH | — 一次性 | 0.75 | 校园生活污水 COD=428.4mg/L | COD:91.4%,混合液中COD减少5.9% | 膜污染速率降低27.4%~91.3% | [ |
1.5 | COD:91.8%,混合液中COD减少8.0% | 膜污染速率降低3.4%~88.4% | |||||
氯化聚乙烯平板膜,膜孔径0.4μm | 恒流过滤 J=17LMH | 一次性 | 1 | 合成废水 COD=(1987±73)mg/L | COD:96%,SMP减少10% | 过滤50mL废水的时间缩短15% | [ |
3 | SMP减少25% | 过滤50mL废水的时间缩短40% | |||||
5 | SMP减少10% | 过滤50mL废水的时间缩短10% | |||||
亲水性中空纤维膜,膜孔径0.1μm | 曝气速率=5L/min 恒流过滤 J=42LMH | 22~45μm(52%) 一次性 | 10 | 合成废水 COD=9.09mg/L | COD:74.4%,UV254去除率提高64% | 过滤周期延长1.9倍,膜表面有机物含量减少26.3% | [ |
40 | COD:82.5%,UV254去除率提高64% | 过滤周期延长3倍 膜表面有机物含量减少83.2% | |||||
PVDF中空纤维膜,膜孔径0.22μm | SRT=30d,HRT=2h 恒流过滤 J=20.02LMH | 每天 | 2 | 湖水 COD=7.31mg/L | COD:52.04%,TOC和UV254去除率提高2.1和2.3倍 | Rc降低47% Rirr降低20.4% | [ |
尼龙滤网,膜孔径30μm | HRT=7d,DO=2~4 mg/L 曝气速率=2.6~ 4.5L/min | 31.9μm 一次性 | 2 | 酒精蒸馏废水 COD=(29.20~48.26)g/L | COD:41%,COD去除率提高1.5倍 | 临界通量提高近23% 无膜更换和清洗下的过滤时间延长8d | [ |
聚乙烯亲水膜,膜孔径0.1μm | HRT=2.4h 曝气强度 1000L/(m3·min) 恒流过滤速率=320m/d | — 一次性 | 40 | 经沉淀处理后的河水 TOC=(2.35±0.25)mg/L | TOC:71%,多糖和蛋白质去除率提高4.3%和2.2%~4.5% | 50d内,TMP从初始值增加到50kPa的过滤周期减少25% | [ |
生物过滤后的出水 TOC=(2.10±0.38)mg/L | TOC:66%,蛋白质去除率提高6.2%~6.7% | 50d内,TMP从初始值增加到50kPa的过滤周期减少50% | |||||
微滤膜 | HRT=2h 曝气强度=0.25m3/h 恒流过滤 J=16.6LMH | — 一次性 | 5 | 模拟微污染地表水 DOC=5.4~6.1mg/L | DOC:35%,UV254去除率提高66.7% | TMP达到50kPa时的水通量为19LMH | [ |
25 | DOC:50%,UV254去除率提高1.3倍 | TMP达到50kPa时的水通量为18LMH | |||||
50 | DOC:75%,UV254去除率提高1.8倍 | TMP达到50kPa时的水通量为15.5LMH | |||||
75 | DOC:80%,UV254去除率提高2倍 | TMP达到50 kPa时的水通量为13LMH | |||||
聚醚酰亚胺中空纤维膜,膜孔径0.5μm | HRT=9.5h 曝气强度=0.5m3/h | 定期 | 10 | 漂白浆厂废水 COD=1125mg/L | COD:88% | 水通量提高60% 过滤阻力降低50% | [ |
PVDF中空纤维膜,膜孔径0.2μm | DO=2~4mg/L 恒流过滤 J=15LMH | 定期 | 2 | 合成废水 COD=44g/L | COD:(97±2)% | 过滤周期延长9.7%~51.2% 过滤阻力降低0.8%~45.3% | [ |
表2 文献报道的实验室规模浸没式PAC-AMBRs系统对溶解性有机物的去除效果和膜污染情况
膜材料、 形式与孔径 | 操作条件 | PAC粒径与投加方式 | PAC投加量 /g·L-1 | 废水及其特征 | 有机物去除效率 | 膜污染控制效果 | 参考文献 |
---|---|---|---|---|---|---|---|
PVDF平板膜,MWCO=140kDa | HRT=4d 恒流过滤 J=30LMH | 75~80μm 一次性 | 0.75 | 市政污水处理厂二沉池出水,TOC=10.7mg/L | TOC:62.7%,TOC去除率提高3.9倍 | 膜过滤时间延长2倍,Rt降低17.4% | [ |
聚氯乙烯平板膜,膜孔径0.4μm | HRT=12h | — 一次性 | 4 | 煤气化废水, COD①=2.27g/L | COD①:93%,sEPS减少67.7% | 过滤周期延长1.25倍,连续运行50d后,TMP下降34% | [ |
PVDF中空纤维膜,膜孔径0.2μm | 恒流过滤 J=15LMH | <200目 一次性 | 1 | 合成废水, COD=398mg/L | COD:95.4%,SMP降低62.2% | Rt和Rc分别降低2.0%和9.1%,膜污染速率降低12.6%~36.4% | [ |
2 | COD:95%,SMP减少69.4% | Rt和Rc分别降低5.1%和16.4%,膜污染速率降低16.1%~38.8% | |||||
4 | COD:94.3%,SMP减少50.6% | Rt和Rc分别降低4.7%和18.8%,膜污染速率降低7.1%~19.9% | |||||
陶瓷平板膜,膜孔径100nm | DO②=1.5~2.5mg/L 恒流过滤 J=15LMH | 149μm 定期 | 20 | 合成市政污水, COD=200~220mg/L | COD:(99.5±0.1)%,SMP和EPS降低77%和61% | 过滤周期延长1.5倍,平均膜污染速率降低33% | [ |
氯化聚乙烯平板膜,膜孔径0.4μm | SRT=30h,HRT=19h SAD③=1.5m3/(m2·h) 恒流过滤 J=8LMH | 0.1~0.25mm 定期 | 1 | 化妆品废水, COD=9.6~10g/L | COD:(95.4±0.6)%,SMP减少6.9% | 临界水通量增加25%,TMP降低 | [ |
聚醚砜膜,膜孔径0.05μm | 曝气速率=8~10L/min,恒压过滤 TMP=20kPa | 75μm 一次性 | 2 | 化学法合成依托度酸 制药废水,COD=18g/L | COD:85%~98%,sEPS减少28%~88% | 运行145d的水通量提高1.5~2.8倍 | [ |
PVDF中空纤维膜,膜孔径0.2μm | HRT=6h,曝气速率=120L/h,恒流过滤J=16LMH | — 一次性 | 0.75 | 校园生活污水 COD=428.4mg/L | COD:91.4%,混合液中COD减少5.9% | 膜污染速率降低27.4%~91.3% | [ |
1.5 | COD:91.8%,混合液中COD减少8.0% | 膜污染速率降低3.4%~88.4% | |||||
氯化聚乙烯平板膜,膜孔径0.4μm | 恒流过滤 J=17LMH | 一次性 | 1 | 合成废水 COD=(1987±73)mg/L | COD:96%,SMP减少10% | 过滤50mL废水的时间缩短15% | [ |
3 | SMP减少25% | 过滤50mL废水的时间缩短40% | |||||
5 | SMP减少10% | 过滤50mL废水的时间缩短10% | |||||
亲水性中空纤维膜,膜孔径0.1μm | 曝气速率=5L/min 恒流过滤 J=42LMH | 22~45μm(52%) 一次性 | 10 | 合成废水 COD=9.09mg/L | COD:74.4%,UV254去除率提高64% | 过滤周期延长1.9倍,膜表面有机物含量减少26.3% | [ |
40 | COD:82.5%,UV254去除率提高64% | 过滤周期延长3倍 膜表面有机物含量减少83.2% | |||||
PVDF中空纤维膜,膜孔径0.22μm | SRT=30d,HRT=2h 恒流过滤 J=20.02LMH | 每天 | 2 | 湖水 COD=7.31mg/L | COD:52.04%,TOC和UV254去除率提高2.1和2.3倍 | Rc降低47% Rirr降低20.4% | [ |
尼龙滤网,膜孔径30μm | HRT=7d,DO=2~4 mg/L 曝气速率=2.6~ 4.5L/min | 31.9μm 一次性 | 2 | 酒精蒸馏废水 COD=(29.20~48.26)g/L | COD:41%,COD去除率提高1.5倍 | 临界通量提高近23% 无膜更换和清洗下的过滤时间延长8d | [ |
聚乙烯亲水膜,膜孔径0.1μm | HRT=2.4h 曝气强度 1000L/(m3·min) 恒流过滤速率=320m/d | — 一次性 | 40 | 经沉淀处理后的河水 TOC=(2.35±0.25)mg/L | TOC:71%,多糖和蛋白质去除率提高4.3%和2.2%~4.5% | 50d内,TMP从初始值增加到50kPa的过滤周期减少25% | [ |
生物过滤后的出水 TOC=(2.10±0.38)mg/L | TOC:66%,蛋白质去除率提高6.2%~6.7% | 50d内,TMP从初始值增加到50kPa的过滤周期减少50% | |||||
微滤膜 | HRT=2h 曝气强度=0.25m3/h 恒流过滤 J=16.6LMH | — 一次性 | 5 | 模拟微污染地表水 DOC=5.4~6.1mg/L | DOC:35%,UV254去除率提高66.7% | TMP达到50kPa时的水通量为19LMH | [ |
25 | DOC:50%,UV254去除率提高1.3倍 | TMP达到50kPa时的水通量为18LMH | |||||
50 | DOC:75%,UV254去除率提高1.8倍 | TMP达到50kPa时的水通量为15.5LMH | |||||
75 | DOC:80%,UV254去除率提高2倍 | TMP达到50 kPa时的水通量为13LMH | |||||
聚醚酰亚胺中空纤维膜,膜孔径0.5μm | HRT=9.5h 曝气强度=0.5m3/h | 定期 | 10 | 漂白浆厂废水 COD=1125mg/L | COD:88% | 水通量提高60% 过滤阻力降低50% | [ |
PVDF中空纤维膜,膜孔径0.2μm | DO=2~4mg/L 恒流过滤 J=15LMH | 定期 | 2 | 合成废水 COD=44g/L | COD:(97±2)% | 过滤周期延长9.7%~51.2% 过滤阻力降低0.8%~45.3% | [ |
膜材料、 形式与孔径 | 操作条件 | PAC投加方式 | PAC投加量 /g·L-1 | 被处理废水 类型 | 废水COD 含量/mg·L-1 | COD去除 效率/% | 膜污染控制效果 | 参考文献 |
---|---|---|---|---|---|---|---|---|
PVDF板式膜,膜孔径0.1μm | HRT=3.3h 曝气强度=6m3/h 恒压过滤TMP=0.1MPa | 一次性 | 1 | 微污染地表水 | 2.91 | 38.1 | 运行第30d的水通量提高10.5% | [ |
2 | 微污染地表水 | 2.86 | 61.3 | 运行第30d的水通量提高5.3% | ||||
3 | 微污染地表水 | 3.03 | 26 | 运行第30d的水通量降低15.3% | ||||
聚乙烯中空纤维膜,膜孔径0.4μm | HRT=100h 曝气强度=4m3/h | 一次性 | 1.5 | 皮革厂废水 | 4051 | 81.6 | 膜污染速率降低,碱洗后TMP降低42.9%,酸清后TMP降低5% | [ |
3 | 79.5 | 膜污染速率降低,碱洗后TMP降低60%,酸清后TMP降低40% | ||||||
聚氯乙烯中空纤维膜,膜孔径10nm | HRT=20min 恒流过滤 J=20LMH | 定期 | 0.003 | 微污染水 | 1.92±0.84 | 24.8 | 运行35d后的TMP降低13% | [ |
聚醚砜平板膜,膜孔径150kDa | HRT=20h 曝气强度=20m3/h 恒流过滤 J=300L/h | 定期 | 0.5 | 果汁加工厂 废水 | 4004±698 | - | 膜污染速率降低65.9% | [ |
表3 文献报道的中试规模浸没式PAC-AMBRs系统对溶解性有机物的去除效果和膜污染情况
膜材料、 形式与孔径 | 操作条件 | PAC投加方式 | PAC投加量 /g·L-1 | 被处理废水 类型 | 废水COD 含量/mg·L-1 | COD去除 效率/% | 膜污染控制效果 | 参考文献 |
---|---|---|---|---|---|---|---|---|
PVDF板式膜,膜孔径0.1μm | HRT=3.3h 曝气强度=6m3/h 恒压过滤TMP=0.1MPa | 一次性 | 1 | 微污染地表水 | 2.91 | 38.1 | 运行第30d的水通量提高10.5% | [ |
2 | 微污染地表水 | 2.86 | 61.3 | 运行第30d的水通量提高5.3% | ||||
3 | 微污染地表水 | 3.03 | 26 | 运行第30d的水通量降低15.3% | ||||
聚乙烯中空纤维膜,膜孔径0.4μm | HRT=100h 曝气强度=4m3/h | 一次性 | 1.5 | 皮革厂废水 | 4051 | 81.6 | 膜污染速率降低,碱洗后TMP降低42.9%,酸清后TMP降低5% | [ |
3 | 79.5 | 膜污染速率降低,碱洗后TMP降低60%,酸清后TMP降低40% | ||||||
聚氯乙烯中空纤维膜,膜孔径10nm | HRT=20min 恒流过滤 J=20LMH | 定期 | 0.003 | 微污染水 | 1.92±0.84 | 24.8 | 运行35d后的TMP降低13% | [ |
聚醚砜平板膜,膜孔径150kDa | HRT=20h 曝气强度=20m3/h 恒流过滤 J=300L/h | 定期 | 0.5 | 果汁加工厂 废水 | 4004±698 | - | 膜污染速率降低65.9% | [ |
1 | PEYRAVI M, JAHANSHAHI M, ALIMORADI M, et al. Old landfill leachate treatment through multistage process: Membrane adsorption bioreactor and nanofitration[J]. Bioprocess and Biosystems Engineering, 2016, 39(12): 1803-1816. |
2 | LIPP P, GROß H J, TIEHM A. Improved elimination of organic micropollutants by a process combination of membrane bioreactor (MBR) and powdered activated carbon (PAC)[J]. Desalination and Water Treatment, 2012, 42(1/2/3): 65-72. |
3 | NG C A, SUN D, ZHANG J, et al. Mechanisms of fouling control in membrane bioreactors by the addition of powdered activated carbon[J]. Separation Science and Technology, 2010, 45(7): 873-889. |
4 | AUN N C, SUN D, FANE A G. Operation of membrane bioreactor with powdered activated carbon addition[J]. Separation Science and Technology, 2006, 41(7): 1447-1466. |
5 | MA Defang, GAO Yue, GAO Baoyu, et al. Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent[J]. Chemosphere, 2014, 117: 338-344. |
6 | GAO Yue, MA Defang, YUE Qinyan, et al. Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition[J]. Bioresource Technology, 2016, 216: 838-844. |
7 | DU Xing, LIU Guangyang, QU Fangshu, et al. Removal of iron, manganese and ammonia from groundwater using a PAC-MBR system: The anti-pollution ability, microbial population and membrane fouling[J]. Desalination, 2017, 403: 97-106. |
8 | 余良正, 杨彬, 雷乐成. 活性炭减缓膜生物反应器膜污染的研究[J]. 高校化学工程学报, 2020, 34(1): 261-268. |
YU Liangzheng, YANG Bin, LEI Lecheng. Study on mitigation of membrane fouling by activated carbon in membrane bioreactors[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(1): 261-268. | |
9 | ZHANG Shi, ZUO Xingtao, XIONG Juan, et al. Effect of powdered activated carbon dosage on sludge properties and membrane bioreactor performance in a hybrid MBR-PAC system[J]. Environmental Technology, 2019, 40(9): 1156-1165. |
10 | TORRETTA V, URBINI G, RABONI M, et al. Effect of powdered activated carbon to reduce fouling in membrane bioreactors: A sustainable solution. Case study[J]. Sustainability, 2013, 5(4): 1501-1509. |
11 | SEO G, TAKIZAWA S, OHGAKI S. Ammonia oxidation at low temperature in a high concentration powdered activated carbon membrane bioreactor[J]. Water Supply, 2002, 2(2): 169-176. |
12 | KIM H S, TAKIZAWA S, OHGAKI S. Application of microfiltration systems coupled with powdered activated carbon to river water treatment[J]. Desalination, 2007, 202(1/2/3): 271-277. |
13 | IORHEMEN O T, HAMZA R A, TAY J H. Membrane fouling control in membrane bioreactors (MBRs) using granular materials[J]. Bioresource Technology, 2017, 240: 9-24. |
14 | WANG Zhiwei, MEI Xiaojie, MA Jinxing, et al. Potential foulants and fouling indicators in MBRs: A critical review[J]. Separation Science and Technology, 2013, 48(1): 22-50. |
15 | 王惠, 张四永, 王亚军. PAC强化MBR工艺处理效果的研究进展[J]. 环境工程, 2020, 38(8): 147-153. |
WANG Hui, ZHANG Siyong, WANG Yajun. Research progress on treatment effect of PAC enhanced MBR process[J]. Environmental Engineering, 2020, 38(8): 147-153. | |
16 | 李健, 郭烨烨, 王霞, 等. 活性炭提高膜生物反应器运行性能的研究进展[J]. 水处理技术, 2021, 47(1): 7-11, 26. |
LI Jian, GUO Yeye, WANG Xia, et al. The research progress of activated carbon improving the performanceof membrane bioreactor[J]. Technology of Water Treatment, 2021, 47(1): 7-11, 26. | |
17 | REN Baoyu, LI Chengyue, ZHANG Xihui, et al. Fe(Ⅱ)-dosed ceramic membrane bioreactor for wastewater treatment: Nutrient removal, microbial community and membrane fouling analysis[J]. The Science of the Total Environment, 2019, 664: 116-126. |
18 | 伍卫, 李畅, 张旭, 等. 亲水改性PVDF膜材料及其膜生物反应器应用[J]. 化工进展, 2019, 38(11): 4991-4998. |
WU Wei, LI Chang, ZHANG Xu, et al. Novel antifouling PVDF membrane with hydrophilic modification and its application in membrane bioreactor[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4991-4998. | |
19 | SAMAEI S M, GATO-TRINIDAD S, ALTAEE A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review[J]. Separation and Purification Technology, 2018, 200: 198-220. |
20 | SKOUTERIS G, SAROJ D, MELIDIS P, et al. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—Critical review[J]. Bioresource Technology, 2015, 185: 399-410. |
21 | ASIF M B, ZHANG Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418: 129481. |
22 | SANO T, KOGA Y, ITO H, et al. Effects of structural vulnerability of flat-sheet membranes on fouling development in continuous submerged membrane bioreactors[J]. Bioresource Technology, 2020, 304: 123015. |
23 | MEIER J. Mechanical influence of PAC particles on membrane processes[J]. Journal of Membrane Science, 2010, 360(1/2): 404-409. |
24 | JEON S, RAJABZADEH S, OKAMURA R, et al. The effect of membrane material and surface pore size on the fouling properties of submerged membranes[J]. Water, 2016, 8(12): 602. |
25 | WU Zhichao, CHEN Mei, WANG Qiaoying, et al. Membrane fouling mechanisms: Membrane characteristics and mixed liquor properties[J]. Environmental Engineering Science, 2018, 35(7): 751-759. |
26 | LI Jin, WANG Dan, YU Deshuang, et al. Performance and membrane fouling in an integrated membrane coagulation reactor (IMCR) treating textile wastewater[J]. Chemical Engineering Journal, 2014, 240: 82-90. |
27 | WANG Qiong, WEN Qinxue, CHEN Zhiqiang. Long term effects of Pb2+ on the membrane fouling in a hydrolytic-anoxic-oxic-membrane bioreactor treating synthetic electroplating wastewater[J]. Chemosphere, 2019, 232: 430-438. |
28 | DEFRANCE L, JAFFRIN M Y, GUPTA B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology, 2000, 73(2): 105-112. |
29 | LIN Hongjun, ZHANG Meijia, WANG Fangyuan, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies[J]. Journal of Membrane Science, 2014, 460: 110-125. |
30 | KHAN S J, VISVANATHAN C, JEGATHEESAN V. Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs[J]. Bioresource Technology, 2012, 113: 165-168. |
31 | SATYAWALI Y, BALAKRISHNAN M. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater[J]. Water Research, 2009, 43(6): 1577-1588. |
32 | WILLIAMS M D, PIRBAZARI M. Membrane bioreactor process for removing biodegradable organic matter from water[J]. Water Research, 2007, 41(17): 3880-3893. |
33 | LI Yaozhong, HE Yanling, LIU Yonghong, et al. Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors[J]. Desalination, 2005, 174(3): 305-314. |
34 | ASIF M B, REN B, LI C, et al. Evaluating the impacts of a high concentration of powdered activated carbon in a ceramic membrane bioreactor: Mixed liquor properties, hydraulic performance and fouling mechanism[J]. Journal of Membrane Science, 2020, 616: 118561. |
35 | YU Zhenzhen, HU Yisong, DZAKPASU Mawuli, et al. Dynamic membrane bioreactor performance enhancement by powdered activated carbon addition: Evaluation of sludge morphological, aggregative and microbial properties[J]. Journal of Environmental Sciences (China), 2019, 75: 73-83. |
36 | HONG Huachang, PENG Wei, ZHANG Meijia, et al. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications[J]. Bioresource Technology, 2013, 146: 7-14. |
37 | SU Xinying, TIAN Yu, LI Hui, et al. New insights into membrane fouling based on characterization of cake sludge and bulk sludge: An especial attention to sludge aggregation[J]. Bioresource Technology, 2013, 128: 586-592. |
38 | REMY M, POTIER V, TEMMINK H, et al. Why low powdered activated carbon addition reduces membrane fouling in MBRs[J]. Water Research, 2010, 44(3): 861-867. |
39 | XIAO Yeyuan, WAHEED H, XIAO Keke, et al. In tandem effects of activated carbon and quorum quenching on fouling control and simultaneous removal of pharmaceutical compounds in membrane bioreactors[J]. Chemical Engineering Journal, 2018, 341: 610-617. |
40 | ZHANG Yongji, WANG Xiaotong, YE Hexiu, et al. Effect and mechanism of reduced membrane bioreactor fouling by powdered activated carbon[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2021, 83(5): 1005-1016. |
41 | 王亮, 熊欢, 李君敬. BPAC对超滤膜处理微污染源水过程中膜污染的控制[J]. 中国给水排水, 2014, 30(23): 38-42. |
WANG Liang, XIONG Huan, LI Junjing. Mechanism and efficiency of BPAC for mitigation of membrane fouling from treating micro-polluted source water by UF[J]. China Water & Wastewater, 2014, 30(23): 38-42. | |
42 | LIN Hongjun, WANG Fangyuan, DING Linxian, et al. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment[J]. Journal of Hazardous Materials, 2011, 192(3): 1509-1514. |
43 | NG C A, SUN D, BASHIR M J K, et al. Optimization of membrane bioreactors by the addition of powdered activated carbon[J]. Bioresource Technology, 2013, 138: 38-47. |
44 | KHAN M M T, TAKIZAWA S, LEWANDOWSKI Z, et al. Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC-MF system[J]. Journal of Membrane Science, 2011, 371(1/2): 99-107. |
45 | VILLAMIL J A, MONSALVO V M, LOPEZ J, et al. Fouling control in membrane bioreactors with sewage-sludge based adsorbents[J]. Water Research, 2016, 105: 65-75. |
46 | KAYA Y, BACAKSIZ A M, GOLEBATMAZ U, et al. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition[J]. Bioprocess and Biosystems Engineering, 2016, 39(4): 661-676. |
47 | MENG F, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. |
48 | CHO B D, FANE A G. Fouling transients in nominally sub-critical flux operation of a membrane bioreactor[J]. Journal of Membrane Science, 2002, 209(2): 391-403. |
49 | IVERSEN V, VILLWOCK J, DE LA TORRE GARCIA T, et al. Impact of MBR flux enhancer on floc size distribution, dewaterability and shear stability[J]. Desalination and Water Treatment, 2009, 6(1/2/3): 33-40. |
50 | DE TEMMERMAN L, MAERE T, TEMMINK H, et al. Salt stress in a membrane bioreactor: Dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing[J]. Water Research, 2014, 63: 112-124. |
51 | REMY M, VAN DER MAREL P, ZWIJNENBURG A, et al. Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors[J]. Water Research, 2009, 43(2): 345-350. |
52 | ZHAO Ying, GU Ping. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR[J]. Separation and Purification Technology, 2006, 52(1): 154-160. |
53 | MAQBOOL T, LY Q V, ASIF M B, et al. Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review[J]. The Science of the Total Environment, 2020, 718: 137291. |
54 | MENG Fangang, DREWS A, MEHREZ R, et al. Occurrence, source, and fate of dissolved organic matter (DOM) in a pilot-scale membrane bioreactor[J]. Environmental Science & Technology, 2009, 43(23): 8821-8826. |
55 | TANG Shujuan, WANG Zhiwei, WU Zhichao, et al. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 377-384. |
56 | WANG Hui, DING An, GAN Zhendong, et al. Fluorescent natural organic matter responsible for ultrafiltration membrane fouling: Fate, contributions and fouling mechanisms[J]. Chemosphere, 2017, 182: 183-193. |
57 | HONG Huachang, ZHANG Meijia, HE Yiming, et al. Fouling mechanisms of gel layer in a submerged membrane bioreactor[J]. Bioresource Technology, 2014, 166: 295-302. |
58 | HUANG Xia, LIU Rui, QIAN Yi. Behaviour of soluble microbial products in a membrane bioreactor[J]. Process Biochemistry, 2000, 36(5): 401-406. |
59 | IORHEMEN O T, HAMZA R A, TAY J H. Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling[J]. Membranes, 2016, 6(2): 33. |
60 | ROSENBERGER S, KRAUME M. Filterability of activated sludge in membrane bioreactors[J]. Desalination, 2002, 146(1/2/3): 373-379. |
61 | LI Chen, YANG Yu, DING Shiyuan, et al. Dynamics of biofouling development on the conditioned membrane and its relationship with membrane performance[J]. Journal of Membrane Science, 2016, 514: 264-273. |
62 | WANG Qiaoying, WANG Zhiwei, ZHU Chaowei, et al. Assessment of SMP fouling by foulant-membrane interaction energy analysis[J]. Journal of Membrane Science, 2013, 446: 154-163. |
63 | CHU Hiu Ping, LI Xiaoyan. Membrane fouling in a membrane bioreactor (MBR): Sludge cake formation and fouling characteristics[J]. Biotechnology and Bioengineering, 2005, 90(3): 323-331. |
64 | JIA Shengyong, HAN Hongjun, HOU Baolin, et al. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR-PAC) system[J]. Chemosphere, 2014, 117: 753-759. |
65 | ZHANG Quan, SUN Feiyun, DONG Wenyi, et al. Micro-polluted surface water treatment and trace-organics removal pathway in a PAC-MBR system[J]. Process Biochemistry, 2015, 50(9): 1422-1428. |
66 | HERNANDEZ R M E, VAN KAAM R, SCHETRITE S, et al. Role and variations of supernatant compounds in submerged membrane bioreactor fouling[J]. Desalination, 2005, 179(1/2/3): 95-107. |
67 | KIM H S, KATAYAMA H, TAKIZAWA S, et al. Development of a microfilter separation system coupled with a high dose of powdered activated carbon for advanced water treatment[J]. Desalination, 2005, 186(1/2/3): 215-226. |
68 | ZOUBOULIS A I, GKOTSIS P K, ZAMBOULIS D X, et al. Application of powdered activated carbon (PAC) for membrane fouling control in a pilot-scale MBR system[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2017, 75(10): 2350-2357. |
69 | SAGBO Omer, SUN Yaxi, HAO Ailing, et al. Effect of PAC addition on MBR process for drinking water treatment[J]. Separation and Purification Technology, 2008, 58(3): 320-327. |
70 | KHAN M M T, TAKIZAWA S, LEWANDOWSKI Z, et al. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor[J]. Water Research, 2013, 47(2): 747-757. |
71 | SATYAWALI Y, BALAKRISHNAN M. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent[J]. Journal of Hazardous Materials, 2009, 170(1): 457-465. |
72 | MA Cong, YU Shuili, SHI Wenxin, et al. High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature[J]. Bioresource Technology, 2012, 113: 136-142. |
73 | AMARAL M C S, LANGE L C, BORGES C P. Evaluation of the use of powdered activated carbon in membrane bioreactor for the treatment of bleach pulp mill effluent[J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2014, 86(9): 788-799. |
74 | ZHANG Shi, XIONG Juan, ZUO Xingtao, et al. Characteristics of the sludge filterability and microbial composition in PAC hybrid MBR: Effect of PAC replenishment ratio[J]. Biochemical Engineering Journal, 2019, 145: 10-17. |
75 | HU Jingyi, SHANG Ran, DENG Huiping, et al. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water[J]. Bioresource Technology, 2014, 154: 290-296. |
76 | MUNZ G, GORI R, MORI G, et al. Powdered activated carbon and membrane bioreactors (MBR-PAC) for tannery wastewater treatment: long term effect on biological and filtration process performances[J]. Desalination, 2007, 207(1/2/3): 349-360. |
77 | JIANG Yu, LIU Yang, SHI Danting, et al. Membrane fouling in a powdered activated carbon-membrane bioreactor (PAC-MBR) for micro-polluted water purification: Fouling characteristics and the roles of PAC[J]. Journal of Cleaner Production, 2020, 277: 122341. |
78 | MARTÍ-CALATAYUD M C, HEßLER R, SCHNEIDER S, et al. Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes[J]. Separation and Purification Technology, 2020, 246: 116863. |
79 | WONG Ling Yong, Choon Aun NG, BASHIR Mohammed J K, et al. Membrane bioreactor performance improvement by adding adsorbent and coagulant: a comparative study[J]. Desalination and Water Treatment, 2016, 57(29): 13433-13439. |
80 | SUZUKI T, WATANABE Y, OZAWA G, et al. Removal of soluble organics and manganese by a hybrid MF hollow fiber membrane system[J]. Desalination, 1998, 117(1/2/3): 119-129. |
81 | MAILLER R, GASPERI J, COQUET Y, et al. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale[J]. The Science of the Total Environment, 2016, 542(Pt A): 983-996. |
82 | MA Defang, GAO Baoyu, XIA Chufan, et al. Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors[J]. Bioresource Technology, 2014, 166: 381-388. |
83 | CAMPINAS M, ROSA M J. Assessing PAC contribution to the NOM fouling control in PAC/UF systems[J]. Water Research, 2010, 44(5): 1636-1644. |
84 | ALVARINO T, KOMESLI O, SUAREZ S, et al. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants[J]. Journal of Hazardous Materials, 2016, 308: 29-36. |
85 | KIM Hanseung. A study on the development of a submerged microfiltration system coupled with high dose of powdered activated carbon [D]. Tokyo: University of Tokyo, 2000. |
86 | RAN N, GILRON J, SHARON-GOJMAN R, et al. Powdered activated carbon exacerbates fouling in MBR treating olive mill wastewater[J]. Water, 2019, 11(12): 2498. |
87 | ALVARINO T, TORREGROSA N, OMIL F, et al. Assessing the feasibility of two hybrid MBR systems using PAC for removing macro and micropollutants[J]. Journal of Environmental Management, 2017, 203(Pt 2): 831-837. |
88 | LI Xueqing, HAI F I, NGHIEM L D. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal[J]. Bioresource Technology, 2011, 102(9): 5319-5324. |
89 | LESAGE N, SPERANDIO M, CABASSUD C. Study of a hybrid process: Adsorption on activated carbon/membrane bioreactor for the treatment of an industrial wastewater[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(3): 303-307. |
90 | VYRIDES I, CONTERAS P A, STUCKEY D C. Post-treatment of a submerged anaerobic membrane bioreactor (SAMBR) saline effluent using powdered activated carbon (PAC)[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 836-841. |
91 | SEO G T, AHAN H I, KIM J T, et al. Domestic wastewater reclamation by submerged membrane bioreactor with high concentration powdered activated carbon for stream restoration[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2004, 50(2): 173-178. |
92 | IVERSEN V, MEHREZ R, HORNG R Y, et al. Fouling mitigation through flocculants and adsorbents addition in membrane bioreactors: Comparing lab and pilot studies[J]. Journal of Membrane Science, 2009, 345(1/2): 21-30. |
93 | SEO G T, JANG S W, LEE S H, et al. The fouling characterization and control in the high concentration PAC membrane bioreactor HCPAC-MBR[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2005, 51(6/7): 77-84. |
94 | LEVEILLE S, CARRIERE A, CHAREST S, et al. PAC membrane bioreactor as an alternative to biological activated carbon filters for drinking water treatment[J]. Journal of Water Supply: Research and Technology-Aqua, 2013, 62(1): 23-34. |
95 | SALEEM M, ALIBARDI L, COSSU R, et al. Analysis of fouling development under dynamic membrane filtration operation[J]. Chemical Engineering Journal, 2017, 312: 136-143. |
96 | PIRBAZARI M, RAVINDRAN V, BADRIYHA B N, et al. Hybrid membrane filtration process for leachate treatment[J]. Water Research, 1996, 30(11): 2691-2706. |
97 | MOHAN S M, NAGALAKSHMI S. A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning[J]. Journal of Water Process Engineering, 2020, 37: 101541. |
98 | SREEDA P, SATHYA A B, SIVASUBRAMANIAN V. Novel application of high-density polyethylene mesh as self-forming dynamic membrane integrated into a bioreactor for wastewater treatment[J]. Environmental Technology, 2018, 39(1): 51-58. |
99 | POOSTCHI A A, MEHRNIA M R, REZVANI F. Dynamic membrane behaviours during constant flux filtration in membrane bioreactor coupled with mesh filter[J]. Environmental Technology, 2015, 36(13/14/15/16): 1751-1758. |
100 | SABAGHIAN M, MEHRNIA M R, ESMAIELI M, et al. Formation and performance of self-forming dynamic membrane (SFDM) in membrane bioreactor (MBR) for treating low-strength wastewater[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2018, 78(3/4): 904-912. |
101 | HUANG Chunyan, LIU Hongju, MENG Shujuan, et al. Effect of PAC on the behavior of dynamic membrane bioreactor filtration layer based on the analysis of mixed liquid properties and model fitting[J]. Membranes, 2020, 10(12): 420. |
102 | MA Cong, YU Shuili, SHI Wenxin, et al. Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water[J]. Bioresource Technology, 2013, 141: 19-24. |
103 | NGUYEN L N, HAI F I, NGHIEM L D, et al. Coupling powdered activated carbon (PAC) adsorption with membrane bioreactor (MBR) treatment for enhanced removal of trace organics[J]. Procedia Engineering, 2012, 44: 1410-1411. |
104 | 王小兵, 游浩荣, 叶元柳, 等. PAC/UF工艺处理微污染水源水的膜污染特性[J]. 中国给水排水, 2020, 36(11): 27-32. |
WANG Xiaobing, YOU Haorong, YE Yuanliu, et al. Membrane fouling of PAC/UF process treating micro-polluted source water[J]. China Water & Wastewater, 2020, 36(11): 27-32. | |
105 | YANG W, ZHOU H, CICEK N. Removal mechanisms of 17β-estradiol and 17α-ethinylestradiol in membrane bioreactors[J]. Water Science and Technology, 2012, 66(6): 1263-1269. |
106 | YU Jing, HE Chengda, LIU Xiang, et al. Removal of perfluorinated compounds by membrane bioreactor with powdered activated carbon (PAC): Adsorption onto sludge and PAC[J]. Desalination, 2014, 334(1): 23-28. |
107 | FANG Herbert H P, SHI Xinlong, ZHANG Tong. Effect of activated carbon on fouling of activated sludge filtration[J]. Desalination, 2006, 189(1/2/3): 193-199. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[12] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[13] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[14] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[15] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |