化工进展 ›› 2023, Vol. 42 ›› Issue (1): 178-193.DOI: 10.16085/j.issn.1000-6613.2022-0530
收稿日期:
2022-03-31
修回日期:
2022-08-26
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
韩凯
作者简介:
毛停停(1999—),女,硕士研究生,研究方向为太阳能界面蒸发。E-mail:2195890259@qq.com。
基金资助:
MAO Tingting(), LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai()
Received:
2022-03-31
Revised:
2022-08-26
Online:
2023-01-25
Published:
2023-02-20
Contact:
HAN Kai
摘要:
海水淡化是缓解全球淡水资源短缺的重要途径,但传统海水淡化技术受限于过大的能源消耗,而太阳能界面蒸发技术因高蒸发效率、可持续性和低成本等优点引起了人们极大的关注。太阳能界面蒸发技术利用光热转换材料将光捕获并高效地转化为热能,随之将热量传递给水分子将其蒸发收集而实现净化。本文综述了近年太阳能界面蒸发系统结构设计的演变,总结了新兴的光热材料如金属基等离子体材料、碳基材料、半导体材料、生物质材料等在海水淡化、污水处理等方面的研究,并基于系统设计理念提出了太阳能蒸发技术应用于有机溶剂纯化领域的可能性。在此基础上,对太阳能界面蒸发技术的前景和面临的挑战进行了总结,提出了太阳能界面蒸发技术与蒸汽发电、光催化、光解水产氢等多种技术的耦合。
中图分类号:
毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193.
MAO Tingting, LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai. Solar interfacial evaporation system and materials for water treatment and organic solvent purification[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 178-193.
材料类型 | 材料名称 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
金属基等离子体 | Al NP/AAM | 4.0 | 约5.7 | 88.4 | [ |
Ag NPs | 4.0 | — | 约80 | [ | |
Au/h-Nanoturf | 1.0 | 1.33 | 约91 | [ | |
3D Au@Bi2MoO6 | 1.0 | 1.69 | 97.1 | [ | |
Ag/Au@GO | 10.0 | 12.96 | 92 | [ | |
AgNPs@C3N4/GO | 1.0 | 1.13 | 77 | [ | |
AuNPs@C-Silica | 1.0 | 约1.5 | 94.6 | [ | |
中空CuS泡沫 | 1.0 | 1.337 | 91.4 | [ | |
Cu9S5/PVDFM | 1.0 | 1.173 | 80.2 | [ | |
TiN NPs | 1.0 | — | >80 | [ | |
TiN、ZrN、HfN | 1.0 | 1.10、1.27、1.36 | 78、88、95 | [ | |
碳基 | 3D碳泡沫 | 1.0 | 10.9(风速6m·s-1) | — | [ |
CNTs/细菌纤维素 | 1.0 | 2.9 | 80 | [ | |
3D 碳点 | 0.5 | 1.58 | — | [ | |
PDMS/CNT/PVDF | 1.0 | 1.43 | [ | ||
CB/PMMA | 0.75 | 1.33 | 约87 | [ | |
CB/GO | 1.0 | 1.27 | 87.5 | [ | |
CNF@RGO-n | 1.0 | 1.47 | 83 | [ | |
rGO-MWCNT | 1.0 | 1.22 | 80.4 | [ | |
CNT | 1.0 | 1.59 | 95.7 | [ | |
CB(Janus结构) | 1.0 | 1.3 | 74 | [ | |
分层石墨烯泡沫 | 1.0 | — | 93.4 | [ | |
N-多孔石墨烯泡沫 | 1.0 | 1.54 | 82.2 | [ | |
CNT气凝胶 | 1.0 | 1.67 | 91 | [ | |
rGO/PVA | 1.0 | 2.5 | 约95 | [ | |
rGO泡沫 | 1.0 | 2.4 | 约100 | [ | |
石墨/纤维素气凝胶 | 1.0 | 1.61 | 90 | [ | |
碳化钼/碳基水凝胶 | 1.0 | 2.19 | 96.15 | [ | |
半导体 | Ti3+-TiO2 | 1.0 | 1.2 | 77.1 | [ |
Janus HN/NiO | 1.0 | 1.33 | 83.5 | [ | |
CuCr2O4/SiO2 | 1.0 | 1.32 | — | [ | |
Co3O4/Ni | 1.0 | 1.226 | >80 | [ | |
H1.68MoO3 | 1.0 | 1.37 | 84.4 | [ | |
MoO3-x | 1.0 | 1.51 | 95 | [ | |
1T-MoS2 | 1.0 | — | 83.3 | [ | |
Ni-G-WO3-x | 1.0 | 2.12 | 85 | [ | |
La0.7Sr0.3CoO3 | 1.0 | 1.67 | 92 | [ | |
生物质 | 碳化丝瓜络海绵 | 1.0 | 1.36 | 83.7 | [ |
碳化竹叶 | 1.0 | 1.75 | 91.9 | [ | |
PPy-Wood | 1.0 | 1.01 | 72.5 | [ | |
Wood@POF | 1.0 | — | 80 | [ | |
碳化双峰木材 | 6.0 | 6.4 | 79.5 | [ | |
碳化竹子 | 1.0 | 1.19 | 84 | [ | |
碳化甘蔗 | 1.0 | 1.57 | 87.4 | [ | |
碳化向日葵 | 1.0 | 1.51 | 约100 | [ | |
碳化咖啡渣 | 1.0 | 1.05 | 71.7 | [ | |
其他 | PPy/PVA | 1.0 | 3.2 | 94 | [ |
3D PPy折纸基 | 1.0 | 2.12 | 91.5 | [ | |
Ti3C2 | 1.0 | 1.44 | 85.5 | [ | |
Ti2C | 1.0 | 1.6 | 84.6 | [ | |
PDA@MXene | 1.0 | 1.276 | 85.2 | [ | |
3D MXene/Co/C | 1.0 | 1.393 | 93.4 | [ | |
BP/PU | 2.0 | 2.18 | 77.57 | [ |
表1 典型光热转换材料性能对比
材料类型 | 材料名称 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
金属基等离子体 | Al NP/AAM | 4.0 | 约5.7 | 88.4 | [ |
Ag NPs | 4.0 | — | 约80 | [ | |
Au/h-Nanoturf | 1.0 | 1.33 | 约91 | [ | |
3D Au@Bi2MoO6 | 1.0 | 1.69 | 97.1 | [ | |
Ag/Au@GO | 10.0 | 12.96 | 92 | [ | |
AgNPs@C3N4/GO | 1.0 | 1.13 | 77 | [ | |
AuNPs@C-Silica | 1.0 | 约1.5 | 94.6 | [ | |
中空CuS泡沫 | 1.0 | 1.337 | 91.4 | [ | |
Cu9S5/PVDFM | 1.0 | 1.173 | 80.2 | [ | |
TiN NPs | 1.0 | — | >80 | [ | |
TiN、ZrN、HfN | 1.0 | 1.10、1.27、1.36 | 78、88、95 | [ | |
碳基 | 3D碳泡沫 | 1.0 | 10.9(风速6m·s-1) | — | [ |
CNTs/细菌纤维素 | 1.0 | 2.9 | 80 | [ | |
3D 碳点 | 0.5 | 1.58 | — | [ | |
PDMS/CNT/PVDF | 1.0 | 1.43 | [ | ||
CB/PMMA | 0.75 | 1.33 | 约87 | [ | |
CB/GO | 1.0 | 1.27 | 87.5 | [ | |
CNF@RGO-n | 1.0 | 1.47 | 83 | [ | |
rGO-MWCNT | 1.0 | 1.22 | 80.4 | [ | |
CNT | 1.0 | 1.59 | 95.7 | [ | |
CB(Janus结构) | 1.0 | 1.3 | 74 | [ | |
分层石墨烯泡沫 | 1.0 | — | 93.4 | [ | |
N-多孔石墨烯泡沫 | 1.0 | 1.54 | 82.2 | [ | |
CNT气凝胶 | 1.0 | 1.67 | 91 | [ | |
rGO/PVA | 1.0 | 2.5 | 约95 | [ | |
rGO泡沫 | 1.0 | 2.4 | 约100 | [ | |
石墨/纤维素气凝胶 | 1.0 | 1.61 | 90 | [ | |
碳化钼/碳基水凝胶 | 1.0 | 2.19 | 96.15 | [ | |
半导体 | Ti3+-TiO2 | 1.0 | 1.2 | 77.1 | [ |
Janus HN/NiO | 1.0 | 1.33 | 83.5 | [ | |
CuCr2O4/SiO2 | 1.0 | 1.32 | — | [ | |
Co3O4/Ni | 1.0 | 1.226 | >80 | [ | |
H1.68MoO3 | 1.0 | 1.37 | 84.4 | [ | |
MoO3-x | 1.0 | 1.51 | 95 | [ | |
1T-MoS2 | 1.0 | — | 83.3 | [ | |
Ni-G-WO3-x | 1.0 | 2.12 | 85 | [ | |
La0.7Sr0.3CoO3 | 1.0 | 1.67 | 92 | [ | |
生物质 | 碳化丝瓜络海绵 | 1.0 | 1.36 | 83.7 | [ |
碳化竹叶 | 1.0 | 1.75 | 91.9 | [ | |
PPy-Wood | 1.0 | 1.01 | 72.5 | [ | |
Wood@POF | 1.0 | — | 80 | [ | |
碳化双峰木材 | 6.0 | 6.4 | 79.5 | [ | |
碳化竹子 | 1.0 | 1.19 | 84 | [ | |
碳化甘蔗 | 1.0 | 1.57 | 87.4 | [ | |
碳化向日葵 | 1.0 | 1.51 | 约100 | [ | |
碳化咖啡渣 | 1.0 | 1.05 | 71.7 | [ | |
其他 | PPy/PVA | 1.0 | 3.2 | 94 | [ |
3D PPy折纸基 | 1.0 | 2.12 | 91.5 | [ | |
Ti3C2 | 1.0 | 1.44 | 85.5 | [ | |
Ti2C | 1.0 | 1.6 | 84.6 | [ | |
PDA@MXene | 1.0 | 1.276 | 85.2 | [ | |
3D MXene/Co/C | 1.0 | 1.393 | 93.4 | [ | |
BP/PU | 2.0 | 2.18 | 77.57 | [ |
溶剂种类 | 沸点/℃ | 介电常数/F·m-1 | 密度/g·cm-3 |
---|---|---|---|
丙酮 | 56.5 | 20.7 | 0.788 |
甲醇 | 64.7 | 32.7 | 0.786 |
四氢呋喃 | 66.0 | 7.6 | 0.889 |
正己烷 | 69.0 | 1.9 | 0.659 |
乙醇 | 78.3 | 24.5 | 0.789 |
乙腈 | 81.6 | 37.5 | 0.787 |
异丙醇 | 82.5 | 19.9 | 0.786 |
正庚烷 | 98.0 | 1.9 | 0.683 |
水 | 100.0 | 78.5 | 1.000 |
甲苯 | 110.6 | 2.4 | 0.872 |
二甲苯 | 约140.0 | 2.4 | 0.897 |
N,N-二甲基甲酰胺 | 153.0 | 36.7 | 0.948 |
正己醇 | 约157.0 | 13.3 | 0.814 |
N,N-二甲基乙酰胺 | 166.1 | 37.8 | 0.937 |
二甲基亚砜 | 189.0 | 47.2 | 1.100 |
N-甲基吡咯烷酮 | 202.0 | 32.2 | 1.028 |
表2 常用有机溶剂物性
溶剂种类 | 沸点/℃ | 介电常数/F·m-1 | 密度/g·cm-3 |
---|---|---|---|
丙酮 | 56.5 | 20.7 | 0.788 |
甲醇 | 64.7 | 32.7 | 0.786 |
四氢呋喃 | 66.0 | 7.6 | 0.889 |
正己烷 | 69.0 | 1.9 | 0.659 |
乙醇 | 78.3 | 24.5 | 0.789 |
乙腈 | 81.6 | 37.5 | 0.787 |
异丙醇 | 82.5 | 19.9 | 0.786 |
正庚烷 | 98.0 | 1.9 | 0.683 |
水 | 100.0 | 78.5 | 1.000 |
甲苯 | 110.6 | 2.4 | 0.872 |
二甲苯 | 约140.0 | 2.4 | 0.897 |
N,N-二甲基甲酰胺 | 153.0 | 36.7 | 0.948 |
正己醇 | 约157.0 | 13.3 | 0.814 |
N,N-二甲基乙酰胺 | 166.1 | 37.8 | 0.937 |
二甲基亚砜 | 189.0 | 47.2 | 1.100 |
N-甲基吡咯烷酮 | 202.0 | 32.2 | 1.028 |
1 | HE G H, ZHAO Y, WANG J H, et al. The water-energy nexus: energy use for water supply in China[J]. International Journal of Water Resources Development, 2019, 35(4): 587-604. |
2 | ZHANG C, LIANG H Q, XU Z K, et al. Harnessing solar-driven photothermal effect toward the water-energy nexus[J]. Advanced Science, 2019, 6(18): 1900883. |
3 | ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications[J]. Nano Energy, 2019, 57: 507-518. |
4 | Ghasemi H, Ni G, Marconnet A M. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449. |
5 | LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017, 41: 269-284. |
6 | LIU G H, CHEN T, XU J L, et al. Solar evaporation for simultaneous steam and power generation[J]. Journal of Materials Chemistry A, 2020, 8(2): 513-531. |
7 | 徐凝. 界面光-蒸汽转化:仿生设计和综合利用[D]. 南京:南京大学, 2019. |
XU Ning. Interfacial photo-vapor conversion: bionic design and comprehensive utilization[D]. Nanjing: Nanjing University,2019. | |
8 | LU Y, WANG X, FAN D Q, et al. Biomass derived Janus solar evaporator for synergic water evaporation and purification[J]. Sustainable Materials and Technologies, 2020, 25: e00180. |
9 | LI J L, WANG X Y, LIN Z H, et al. Over 10kg/(m2·h) evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 928-937. |
10 | LI X Q, LI J L, LU J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338. |
11 | GUAN Q F, HAN Z M, LING Z C, et al. Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water[J]. Nano Letters, 2020, 20(8): 5699-5704. |
12 | SINGH S C, ELKABBASH M, LI Z L, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation[J]. Nature Sustainability, 2020, 3(11): 938-946. |
13 | ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology, 2018, 13(6): 489-495. |
14 | ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. |
15 | WU Y T, KONG R, MA C L, et al. Simulation-guided design of bamboo leaf-derived carbon-based high-efficiency evaporator for solar-driven interface water evaporation[J]. Energy & Environmental Materials, 2022, 5(4): 1323-1331. |
16 | ZHANG P P, ZHAO F, SHI W, et al. Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle[J]. Advanced Materials, 2022, 34(12): 2110548. |
17 | CHEN B L, ZHANG X, XIA Y, et al. Harnessing synchronous photothermal and photocatalytic effects of cryptomelane-type MnO2 nanowires towards clean water production[J]. Journal of Materials Chemistry A, 2021, 9(4): 2414-2420. |
18 | GUO S H, LI X H, LI J, et al. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems[J]. Nature Communications, 2021, 12: 1343. |
19 | 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596. |
GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry, 2019, 31(4): 580-596. | |
20 | LIU Y M, YU S T, FENG R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials, 2015, 27(17): 2768-2774. |
21 | LI X Q, XU W C, TANG M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-73958. |
22 | FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709. |
23 | LI X Q, LIN R X, NI G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment [J]. National Science Review, 2018, 5(1): 70-77. |
24 | WANG Y C, WANG C Z, SONG X J, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881. |
25 | ZHANG L J, BAI B, HU N, et al. Efficient 3D-interfacial solar steam generation enabled by photothermal nanodiamonds paint-coat with optimized heat management[J]. Applied Thermal Engineering, 2020, 171: 115059. |
26 | HONG S, SHI Y, LI R Y, et al. Nature-Inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28517-28524. |
27 | TU W J, WANG Z Z, WU Q Y, et al. Tree-inspired ultra-rapid steam generation and simultaneous energy harvesting under weak illumination[J]. Journal of Materials Chemistry A, 2020, 8(20): 10260-12068. |
28 | XU D X, LI Z D, LI L S, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications[J]. Advanced Functional Materials, 2020, 30: 2000712. |
29 | LI W G, LI Z, BERTELSMANN K, et al. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced Materials, 2019, 31(29): 1900720. |
30 | GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
31 | ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401. |
32 | CHEN C L, ZHOU L, YU J Y, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano Energy, 2018, 51: 451-456. |
33 | CHEN S, SUN Z Y, XIANG W L, et al. Plasmonic wooden flower for highly efficient solar vapor generation[J]. Nano Energy, 2020, 76: 104998. |
34 | KIM J U, KANG S J, LEE S, et al. Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator[J]. Advanced Functional Materials, 2020, 30: 2003862. |
35 | TAHIR Z, KIM S, ULLAH F, et al. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2490-2496. |
36 | ZHENG Z M, LI H Y, ZHANG X D, et al. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: extraordinary desalination and electricity generation[J]. Nano Energy, 2020, 68: 104298. |
37 | WANG M M, ZHANG J, WANG P, et al. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation J]. Nano Research, 2018, 11(7): 3854-3863. |
38 | ZHAO L P, DU C, ZHOU C, et al. Structurally ordered AgNPs@C3N4/GO membranes toward solar-driven freshwater generation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4362-4370. |
39 | LI C S, CAO S J, LUTZKI J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J]. Journal of the American Chemical Society, 2022, 144: 3083-3090. |
40 | CUI R R, WEI J L, DU C, et al. Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification [J]. Journal of Materials Chemistry A, 2020, 8(26): 13311-13319. |
41 | LI X J, YAO Z P, WANG J K, et al. A novel flake-like Cu7S4 solar absorber for high-performance large-scale water evaporation[J]. ACS Applied Energy Materials, 2019, 2(7): 5154-5161. |
42 | SU L F, HU Y Q, MA Z Q, et al. Synthesis of hollow copper sulfide nanocubes with low emissivity for highly efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110484. |
43 | TAO F J, ZHANG Y L, YIN K, et al. A plasmonic interfacial evaporator for high-efficiency solar vapor generation[J]. Sustainable Energy & Fuels, 2018, 2(12): 2762-2769. |
44 | SUN P, WANG W L, ZHANG W, et al. 3D interconnected gyroid Au-CuS materials for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34837-34847. |
45 | FARID M U, KHARRAZ J A, WANG P, et al. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane [J]. Journal of Cleaner Production, 2020, 271: 122684. |
46 | KAUR M, ISHII S, SHINDE S L, et al. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523-8528. |
47 | KAUR M, ISHII S, SHINDE S L, et al. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride[J]. Advanced Sustainable Systems, 2019, 3: 1800112. |
48 | TRAVER E, KARABALLI R A, MONFARED Y E, et al. TiN, ZrN, and HfN nanoparticles on aanoporous aluminum oxide membranes for solar-driven water evaporation and desalination[J]. ACS Applied Nano Materials, 2020, 3(3): 2787-2794. |
49 | MA T Y, YANG C Y, GUO W, et al. Flexible Pt3Ni-S-deposited teflon membrane with high surface mechanical properties for efficient solar-driven strong acidic/alkaline water evaporation[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27140-27149. |
50 | CAO S S, JIANG Q S, WU X H, et al. Advances in solar evaporator materials for freshwater generation[J]. Journal of Materials Chemistry A, 2019, 7(42): 24092-24123. |
51 | HUANG J W, HU Y J, BAI Y, et al. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating[J]. Desalination, 2020, 489: 114529. |
52 | CHEN G L, ZHANG N, LI N, et al. A 3D hemispheric steam generator based on an organic-inorganic composite light absorber for efficient solar evaporation and desalination[J]. Advanced Materials Interfaces, 2019, 7: 1901715. |
53 | TIAN J, HUANG X H, WU W. Graphene-based stand-alone networks for efficient solar steam generation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1135-1141. |
54 | WEI W W, GUAN Q B, YOU C T, et al. Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2020, 8(28): 13927-13934. |
55 | WANG Y H, WANG C Z, SONG X J, et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A, 2018, 6(3): 963-971. |
56 | LI Y J, GAO T T, YANG Z, et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy, 2017, 41: 201-209. |
57 | LI L, ZANG L L, ZHANG S C, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191-197. |
58 | AWAD F S, KIRIARACHCHI H D, ABOUZEID K M, et al. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination[J]. ACS Applied Energy Materials, 2018, 1(3): 976-985. |
59 | WANG L, FENG Y J, WANG K Y, et al. Solar water sterilization enabled by photothermal nanomaterials[J]. Nano Energy, 2021, 87: 106158. |
60 | NOUREEN L, XIE Z J, GAO Y J, et al. Multifunctional Ag3PO4-rGO-coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6343-6350. |
61 | HIGGINS M W, SHAKEEL RAHMAAN A R, DEVARAPALLI R R, et al. Carbon fabric based solar steam generation for waste water treatment[J]. Solar Energy, 2018, 159: 800-810. |
62 | ZHANG Q, XIAO X F, WANG G, et al. Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and durability[J]. Journal of Materials Chemistry A, 2018, 6(35): 17212-17219. |
63 | ZHU B, KOU H, LIU Z X, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
64 | WANG Y L, LI G J, CHAN K C. Cost-effective and eco-friendly laser-processed cotton paper for high-performance solar evaporation[J]. Solar Energy Materials and Solar Cells, 2020, 218: 110693. |
65 | LI T T, FANG Q L, XI X F, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 586-593. |
66 | KOU H, LIU Z X, ZHU B, et al. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight[J]. Desalination, 2019, 462: 29-38. |
67 | LIU G H, CHEN T, XU J L, et al. Salt-rejecting solar interfacial evaporation [J]. Cell Reports Physical Science, 2021, 2(1): 100310. |
68 | XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8: 1702884. |
69 | XU N, LI J L, WANG. Y,et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine[J]. Science Advences, 2019, 5(7): eaaw7013. |
70 | XIA Y, LI Y, YUAN S, et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine[J]. Journal of Materials Chemistry A, 2020, 8(32): 16212-16217. |
71 | REN H Y, TANG M, GUAN B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017, 29: 1702590. |
72 | ITO Y, HABATA Y, KURAMOCHI H, et al. Damage-free solar dewatering of micro-algal concentrates via multifunctional hierarchical porous graphene[J]. Advanced Sustainable Systems, 2019, 3: 1900045. |
73 | QIU P X, LIU F L, XU C M, et al. Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination[J]. Journal of Materials Chemistry A, 2019, 7(21): 13036-13042. |
74 | LI J L, YU F, JIANG Y, et al. Photothermal diatomite/carbon nanotube combined aerogel for high-efficiency solar steam generation and wastewater purification[J]. Solar RRL, 2022, 6(4): 2101011.1-2101011.9. |
75 | ZHOU X Y, ZHAO F, GUO Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-92. |
76 | LIANG H X, LIAO Q H, CHEN N, et al. thermal efficiency of solar steam generation approaching 100% through capillary water transport[J]. Angewandte Chemie International Edition, 2019, 58(52): 19041-19046. |
77 | GONG F, WANG W B, LI H, et al. Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification [J]. Applied Energy, 2020, 261: 114410. |
78 | YU F, CHEN Z H, GUO Z Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7139-7149. |
79 | YING P J, LI M, YU F L, et al. Band gap engineering in an efficient solar-driven interfacial evaporation system[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32880-32887. |
80 | QIN D D, ZHU Y J, YANG R L, et al. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination[J]. Nanoscale, 2020, 12(12): 6717-6728. |
81 | SHI Y, LI R Y, SHI L, et al. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation[J]. Advanced Sustainable Systems, 2018, 2: 1700145. |
82 | WANG P F, GU Y F, MIAO L, et al. Co3O4 nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun[J]. Sustainable Materials and Technologies, 2019, 20: e00106. |
83 | ZHU Q, YE K, ZHU W, et al. A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2502-2509. |
84 | HUANG S L, LONG Y J, YI H, et al. Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption[J]. Applied Surface Science, 2019, 491: 328-334. |
85 | ZHANG L, MU L, ZHOU Q, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research, 2020, 170: 115367. |
86 | LI Z K, ZHENG M, WEI N, et al. Broadband-absorbing WO3- x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation[J]. Solar Energy Materials and Solar Cells, 2020, 205, 110254. |
87 | LI Z K, XU R Q, WEI N, et al. 3D network structure and hydrophobic Ni-G-WO3- x solar-driven interfacial evaporator for highly efficient steam generation [J]. Solar Energy Materials and Solar Cells, 2020, 217: 110593. |
88 | WANG Y C, WANG C Z, LIANG W Y, et al. Multifunctional perovskite oxide for efficient solar-driven evaporation and energy-saving regeneration [J]. Nano Energy, 2020, 70: 104538. |
89 | LU Y, DAI T Y, LU C H, et al. Fabrication of doped SmBaCo2O5+ δ double perovskites for enhanced solar-driven interfacial evaporation[J]. Ceramics International, 2019, 45(18): 24903-24908. |
90 | ZHU M W, LI Y J, CHEN G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29: 1704107. |
91 | WANG Z, YAN Y T, SHEN X P, et al. A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement [J]. Journal of Materials Chemistry A, 2019, 7(36): 20706-207012. |
92 | XIA Z J, YANG H C, CHEN Z, et al. Porphyrin covalent organic framework (POF)-based interface engineering for solar steam generation[J]. Advanced Materials Interfaces, 2019, 6: 1900254. |
93 | HE S M, CHEN C J, KUANG Y D, et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination[J]. Energy & Environmental Science, 2019, 12(5): 1558-1567. |
94 | TANG J B, ZHENG T, SONG Z P, et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18504-18511. |
95 | SUN Z Z, LI W Z, SONG W L, et al. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration[J]. Journal of Materials Chemistry A, 2020, 8(1): 349-357. |
96 | LI Z T, WANG C B, LEI T, et al. Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity[J]. Advanced Sustainable Systems, 2019, 3: 1800144. |
97 | LIU J, LIU Q L, MA D L, et al. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation [J]. Journal of Materials Chemistry A, 2019, 7(15): 9034-9039. |
98 | SUN P, ZHANG W, ZADA I, et al. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2171-2179. |
99 | HAN X, WANG W P, ZUO K C, et al. Bio-derived ultrathin membrane for solar driven water purification[J]. Nano Energy, 2019, 60: 567-575. |
100 | WANG C F, WU C L, KUO S W, et al. Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification[J]. Scientific Reports, 2020, 10(1): 12769. |
101 | LU Y, DAI T Y, FAN D Q, et al. Turning trash into treasure: pencil waste-derived materials for solar-powered water evaporation[J]. Energy Technology, 2020, 8: 2000567. |
102 | ZHA X J, ZHAO X, PU J H, et al. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36589-36597. |
103 | JU M M, YANG Y W, ZHAO J Q, et al. Macroporous 3D MXene architecture for solar-driven interfacial water evaporation[J]. Journal of Advanced Dielectrics, 2020, 9: 1950047. |
104 | MING X, GUO A, ZHANG Q, et al. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification[J]. Carbon, 2020, 167: 285-295. |
105 | ZHAO X, ZHA X J, PU J H, et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(17): 10446-10455. |
106 | ZHAO X, ZHA X J, TANG L S, et al. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation[J]. Nano Research, 2019, 13(1): 255-264. |
107 | FAN X Q, YANG Y, SHI X L, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance [J]. Advanced Functional Materials, 2020, 2007110. |
108 | LI Z X, CAI W, WANG X, et al. Self-floating black phosphorous nanosheets as a carry-on solar vapor generator[J]. Journal of Colloid and Interface Science, 2021, 582: 496-505. |
109 | CAI W, MU X W, PAN Y, et al. Black phosphorous nanosheets: a novel solar vapor generator[J]. Solar RRL, 2020, 4: 1900537. |
110 | NIE L, CHUAH C Y, BAE T H, et al. Graphene-based advanced membrane applications in organic solvent nanofiltration[J]. Advanced Functional Materials, 2020, 31: 2006949. |
111 | FANG Q, LI G L, LIN H B, et al. Solar-driven organic solvent purification enabled by the robust cubic Prussian blue[J]. Journal of Materials Chemistry A, 2019, 7(15): 8960-8966. |
[1] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[2] | 曹文胜, 徐建壮, 郭兆春, 林文胜, BLUTH Christoph. 冷能利用片冰机海水淡化动态仿真[J]. 化工进展, 2021, 40(S1): 61-68. |
[3] | 吕宏卿,王鑫,刘洪锟,邢玉雷,韩旭,齐春华,徐克,李华. 海水淡化用薄壁卷焊钛管传热及耐蚀性能[J]. 化工进展, 2019, 38(08): 3556-3561. |
[4] | 刘秀龙, 曹泷, 苗政, 张鸣, 谢学旺, 徐进良. 有机朗肯循环驱动反渗透海水淡化运行模式及工质选择[J]. 化工进展, 2017, 36(10): 3639-3647. |
[5] | 潘艳秋, 沈驭臣, 闫勋栋, 俞路. 气隙式膜蒸馏NaCl溶液的两相流强化[J]. 化工进展, 2017, 36(01): 66-70. |
[6] | 解利昕1,2,3,周文萌1,2,3,陈飞1,2,3. 水平管降膜蒸发器的传热性能[J]. 化工进展, 2014, 33(11): 2878-2881. |
[7] | 程百花1,2,王 越1,2,许恩乐1,2,孙扬平1,2,徐世昌1,2,王世昌1,2. 旋转式能量回收装置的启动与运行特性[J]. 化工进展, 2013, 32(09): 2030-2034. |
[8] | 王树勋,赵 瑾,张雨山,王 静. 纤维滤料与石英砂过滤海水的对比试验[J]. 化工进展, 2013, 32(08): 1939-1942. |
[9] | 刘骆峰1,2,张雨山2,黄西平2,张家凯2,张宏伟1. 淡化后浓海水化学资源综合利用技术研究进展[J]. 化工进展, 2013, 32(02): 446-452. |
[10] | 陈艳艳1,2,王 越1,2,王照成1,2,徐世昌1,2,王世昌1,2. 海水淡化能量回收装置用分腔式切换器研究[J]. 化工进展, 2012, 31(10): 2162-2166. |
[11] | 解利昕,田志国. 氧化还原脱除海水中的Cu2+离子[J]. 化工进展, 2012, 31(09): 1899-1902. |
[12] | 陶 钧,宫建国,曾 胜,单 岩,金 涛. 增湿去湿海水淡化技术的研究进展[J]. 化工进展, 2012, 31(07): 1419-1424. |
[13] | 马学虎,兰 忠,王四芳,李 璐. 海水淡化浓盐水排放对环境的影响与零排放技术研究进展 [J]. 化工进展, 2011, 30(1): 233-. |
[14] | 李 刚1,李雪梅1,王 铎2,何 涛1,高从堦2. 正渗透膜技术及其应用 [J]. 化工进展, 2010, 29(8): 1388-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |