化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 436-447.DOI: 10.16085/j.issn.1000-6613.2022-0896
收稿日期:
2022-05-16
修回日期:
2022-06-09
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
刘文芳
作者简介:
孟令玎(1998—),女,硕士研究生,研究方向为酶催化与酶固定化。E-mail:15520711215@163.com。
MENG Lingding(), MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang()
Received:
2022-05-16
Revised:
2022-06-09
Online:
2022-10-20
Published:
2022-11-10
Contact:
LIU Wenfang
摘要:
化石燃料的大量燃烧使温室气体CO2的排放量不断增加,对环境造成恶劣影响,将CO2捕集并转化为高附加值化学品是实现节能减排和变废为宝的一种双赢策略。酶催化CO2捕集和转化具有高效、高选择性、反应条件温和、环境友好等优点。碳酸酐酶(CA)可大大加速CO2水合反应,而甲酸脱氢酶(FDH)可催化CO2还原为甲酸,二者协同可增强CO2还原动力学。但酶促反应的工业化应用过程中,酶所处环境的温度、酸碱度以及其他离子的种类和浓度等因素均可能导致酶失活,因此,酶的稳定性研究至关重要。本文从热稳定性、酸碱稳定性和离子稳定性的角度,综述了CA和FDH的稳定性研究进展。改善酶稳定性的手段包括使用极端微生物、酶分子设计与改造、固定化等,重点讨论了固定化对酶稳定性的提升效果,为未来的工业化应用提供参考。
中图分类号:
孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447.
MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447.
1 | 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展[J]. 化学学报, 2019, 77(11): 1099-1114. |
LIANG Shan, ZONG Minhua, LOU Wenyong. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide[J]. Acta Chimiica Sinica, 2019, 77(11): 1099-1114. | |
2 | 李琦, 刘桂臻, 李小春, 等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术, 2022, 54(1): 157-166. |
LI Qi, LIU Guizhen, LI Xiaochun, et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences, 2022, 54(1): 157-166. | |
3 | YAASHIKAA P R, SENTHIL KUMAR P, VARJANI S J, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. Journal of CO2 Utilization, 2019, 33: 131-147. |
4 | SULTANA S, CHANDRA P C, MARTHA S, et al. A review of harvesting clean fuels from enzymatic CO2 reduction[J]. RSC Advances, 2016, 6(50): 44170-44194. |
5 | BHATIA S K, BHATIA R K, JEON J M, et al. Carbon dioxide capture and bioenergy production using biological system – A review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 143-158. |
6 | Cristhian MOLINA-FERNÁNDEZ, LUIS Patricia. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review[J]. Journal of CO2 Utilization, 2021, 47: 101475. |
7 | TALEKAR S, JO B H, DORDICK J, et al. Carbonic anhydrase for CO2 capture, conversion and utilization[J]. Current Opinion in Biotechnology, 2022, 74: 230-240. |
8 | REN Sizhu, CHEN Ruixue, WU Zhangfei, et al. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111779. |
9 | ASPATWAR Ashok, HAAPANEN Susanna, PARKKIL Seppo. An update on the metabolic roles of carbonic anhydrases in the model alga chlamydomonas reinhardtii[J]. Metabolites, 2018, 8(1): 22. |
10 | HEWETT-EMMETT D, TASHIAN R E. Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families[J]. Molecular Phylogenetics and Evolution, 1996,5(1): 50-77. |
11 | ATKINS C A, PATTERSON B D, GRAHAM D. Plant carbonic anhydrases: I. Distribution of types among species[J]. Plant Physiology, 1972, 50(2): 214-217. |
12 | DIMARIO R J, MACHINGURA M C, WALDROP G L, et al. The many types of carbonic anhydrases in photosynthetic organisms[J]. Plant Science, 2018, 268: 11-17. |
13 | JENSEN E L, CLEMENT R, KOSTA A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton[J]. The ISME Journal, 2019, 13(8): 2094-2106. |
14 | LOFERER M J, TAUTERMANN C S, LOEFFLER H H, et al. Influence of backbone conformations of human carbonic anhydrase Ⅱ on carbon dioxide hydration: Hydration pathways and binding of bicarbonate[J]. Journal of the American Chemical Society, 2003, 125(29): 8921-8927. |
15 | SHEKH A Y, KRISHNAMURTHI K, MUDLIAR S N, et al. Recent advancements in carbonic anhydrase–driven processes for CO2 sequestration: Minireview[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(14): 1419-1440. |
16 | 朱龙观. 高等配位化学[M]. 上海: 华东理工大学出版社, 2009: 104-105. |
ZHU Longguan. Advanced coordination chemistry[M]. Shanghai: East China University of Science and Technology Press, 2009: 104-105. | |
17 | VERPOORTE J A, MEHTA S, EDSALL J T. Esterase activities of human carbonic anhydrases B and C[J]. Journal of Biological Chemistry, 1967, 242(18): 4221-4229. |
18 | SARRAF N S, SABOURY A A, RANJBAR B, et al. Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature[J]. Acta Biochimica Polonica, 2004, 51(3): 665–671. |
19 | LAVECCHIA R, ZUGARO M. Thermal denaturation of erythrocyte carbonic anhydrase[J]. FEBS Letters, 1991, 292(1): 162-164. |
20 | Jesús FERNÁNDEZ-LUCAS. New insights on enzyme stabilization for industrial biocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(45): 15073-15074. |
21 | LUCA Viviana, VULLO Daniela, SCOZZAFAVA Andrea, et al. An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction[J]. Bioorganic & Medicinal Chemistry, 2013, 21(6): 1465-1469. |
22 | CAPASSO Clemente, LUCA Viviana, CARGINALE Vincenzo, et al. Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1[J]. Journal of Enzyme inhibition and Medicinal Chemistry, 2012, 27(6): 892-897. |
23 | RUSSO M E, OLIVIERI G, CAPASSO C, et al. Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture[J]. Enzyme and Microbial Technology, 2013, 53(4): 271-277. |
24 | KANTH B K, JUN S, KUMARI S, et al. Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: Its expression and characterization for CO2-sequestration applications[J]. Process Biochemistry, 2014, 49(12): 2114-2121. |
25 | JAMES P, ISUPOV M N, SAYER C, et al. The structure of a tetrameric [alpha]-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability[J]. Acta Crystallographica Section D, 2014, 70(10): 2607-2618. |
26 | FARIDI S, SATYANARAYANA T. Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration[J]. Environmental Science and Pollution Research, 2016, 23(15): 15236-15249. |
27 | LEHMANN M, PASAMONTES L, LASSEN S F, et al. The consensus concept for thermostability engineering of proteins[J]. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 2000, 1543(2): 408-415. |
28 | WIJMA H J, FLOOR R J, JANSSEN D B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability[J]. Current Opinion in Structural Biology, 2013, 23(4): 588-594. |
29 | ZHAO Yue, MIAO Yulu, ZHI Fengdong, et al. Rational design of pepsin for enhanced thermostability via exploiting the guide of structural weakness on stability[J]. Frontiers in Physics, 2021, 9: 755253. |
30 | VIEILLE C, ZEIKUS G J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1): 1-43. |
31 | DANIEL R M, DANSON M J, HOUGH D W, et al. Enzyme stability and activity at high temperatures in anatomy and physiology of extremophilic proteins[M]. Massachusetts: Nova Biomedical, 2008: 1-34. |
32 | BOONE C D, HABIBZADEGAN A, TU C, et al. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond[J]. Acta Crystallographica Section D, 2013, 69(8): 1414-1422. |
33 | WU Shenglan, CHEN Jinrui, MA Liang, et al. Design of carbonic anhydrase with improved thermostability for CO2 capture via molecular simulations[J]. Journal of CO2 Utilization, 2020, 38: 141-147. |
34 | ALVIZO O, NGUYEN L J, SAVILE C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas[J]. Proceedings of the National Academy of Sciences, 2014, 111(46): 16436. |
35 | PARRA-CRUZ R, LAU P L, LOH H, et al. Engineering of thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability[J]. Journal of CO2 Utilization, 2020, 37: 1-8. |
36 | YAN Ming, LIU Zhixia, LU Diannan, et al. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature[J]. Biomacromolecules, 2007, 8(2): 560-565. |
37 | MERLE Geraldine, FRADETTE Sylvie, MADORE Eric, et al. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture[J]. Langmuir, 2014, 30(23): 6915-6919. |
38 | LI Juan, ZHOU Xincheng, ZHANG Lin, et al. Investigation on the immobilization of carbonic anhydrase and the catalytic absorption of carbon dioxide[J]. Energy & Fuels, 2017, 31(1): 778-784. |
39 | ZHU Yilin, LI Weiyi, SUN Guanzhong, et al. Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor[J]. International Journal of Greenhouse Gas Control, 2016, 49: 290-296. |
40 | BUCHOLZ T L, HULVEY M K, REARDON J P, et al. Novel materials for carbon dioxide mitigation technology: Development of an organosilica coating containing carbonic anhydrase for applications in CO2 capture[M]. Amsterdam: Elsevier, 2015: 117-147. |
41 | LEIMBRINK M, NIKOLEIT K G, SPITZER R, et al. Enzymatic reactive absorption of CO2 in MDEA by means of an innovative biocatalyst delivery system[J]. Chemical Engineering Journal, 2018, 334: 1195-1205. |
42 | AL-DHRUB A H, SAHIN S, OZMEN I, et al. Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles[J]. Process Biochemistry, 2017, 57: 95-104. |
43 | KIM J K, ABDELHAMID M A A, PACK S P. Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports[J]. International Journal of Biological Macromolecules, 2019, 135: 969-977. |
44 | ZHANG Miaorong, ZHANG Yan, YANG Chuankai, et al. Enzyme-inorganic hybrid nanoflowers: Classification, synthesis, functionalization and potential applications[J]. Chemical Engineering Journal, 2021, 415: 129075. |
45 | CELIK Cagla, TASDEMIR Didar, DEMIRBAS Ayse, et al. Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications[J]. RSC Advances, 2018, 8(45): 25298-25303. |
46 | DUAN Linlin, LI Hui, ZHANG Yatao. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability[J]. ACS Omega, 2018, 3(12): 18234-18241. |
47 | WEN Huan, ZHANG Lei, DU Yingjie, et al. Bimetal based in organic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101171. |
48 | DU Yingjie, GAO Jing, ZHOU Liya, et al. Enzyme nanocapsules armored by metal-organic frameworks: a novel approach for preparing nanobiocatalyst[J]. Chemical Engineering Journal, 2017, 327: 1192-1197. |
49 | CUI Jiandong, REN Sizhu, SUN Baoting, et al. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges[J]. Coordination Chemistry Reviews, 2018, 370: 22-41. |
50 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. |
51 | GONG Xiao, WANG Yongjin, KUANG Tairong. ZIF-8-based membranes for carbon dioxide capture and separation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11204-11214. |
52 | GAO Song, HOU Jingwei, DENG Zeyu, et al. Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules[J]. Chem, 2019, 5(6): 1597-1608. |
53 | ASADI Vahideh, KARDANPOUR Reihaneh, TANGESTANINEJAD Shahram, et al. Novel bovine carbonic anhydrase encapsulated in a metal-organic framework: a new platform for biomimetic sequestration of CO2 [J]. RSC Advances, 2019, 9(49): 28460-28469. |
54 | REN Sizhu, FENG Yuxiao, WEN Huan, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration[J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. |
55 | REN Sizhu, LI Conghai, TAN Zhilei, et al. Carbonic anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture[J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3372-3379. |
56 | 张士汉, 沈遥, 杜敏娥, 等. 一种固定化碳酸酐酶及其制备与在捕集烟气中二氧化碳的应用: CN109517816B[P]. 2021-07-27. |
ZHANG Shihan, SHEN Yao, DU Min'e, et al. An immobilized carbonic anhydrase and its preparation and application in capturing carbon dioxide in flue gas: CN109517816B[P]. 2021-07- 27. | |
57 | MIGLIARDINI F, LUCA V D, CARGINALE V, et al. Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29(1): 146-150. |
58 | PERFETTO R, PRETE S D, VULLO D, et al. Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1): 759-766. |
59 | EFFENDI S S, CHIU C Y, CHANG Y K, et al. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration[J]. International Journal of Biological Macromolecules, 2020, 152: 930-938. |
60 | GITLIN I, CARBECK J D, WHITESIDES G M. Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis[J]. Angewandte Chemie International Edition, 2006, 45(19): 3022-3060. |
61 | DEMIR Y, DEMIR N, NADAROGLU H, et al. Purification and characterization of carbonic anhydrase from bovine erythrocyte plasma membrane[J]. Preparative Biochemistry & Biotechnology, 2000, 30(1): 49-59. |
62 | DAVY Raymond. Development of catalysts for fast, energy efficient post combustion capture of CO2 into water; an alternative to monoethanolamine (MEA) solvents[J]. Energy Procedia, 2009, 1(1): 885-892 |
63 | HU G, SMITH K H, NICHOLAS N J, et al. Enzymatic carbon dioxide capture using a thermally stable carbonic anhydrase as a promoter in potassium carbonate solvents[J]. Chemical Engineering Journal, 2017, 307: 49-55. |
64 | ZEVENHOVEN Ron, WIKLUND Anders, FAGERLUND Johan, et al. Carbonation of calcium-containing mineral and industrial by-products[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 110-119. |
65 | NAIR S K, CHRISTIANSON D W. Structural properties of human carbonic anhydrase II at pH 9.5[J]. Biochemical and Biophysical Research Communications, 1991, 181(2): 579-584. |
66 | FARIDI S, SATYANARAYANA T. Characteristics of recombinant alpha-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1[J]. International Journal of Biological Macromolecules, 2016, 89: 659-668. |
67 | TAN Shih, HAN Yinlung, YU Youjin, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase[J]. Process Biochemistry, 2018, 73: 38-46. |
68 | SCHOFIELD K. Mercury emission control from coal combustion systems: A modified air preheater solution[J]. Combustion and Flame, 2012, 159(4): 1741-1747. |
69 | 朱轶林. 固定化碳酸酐酶的酶学性质和催化吸收CO2特性的实验研究[D]. 重庆: 重庆大学, 2015. |
ZHU Yilin. Research on enzymatic properties of immobilized carbonic anhydrase and CO2 catalytic absorption[D]. Chongqing: Chongqing University, 2015. | |
70 | RIORDAN J F. The role of metals in enzyme activity[J]. Annals of Clinical and Laboratory Science, 1977, 7(2): 119-29. |
71 | BOND G M, STRINGER J, BRANDVOLD D K, et al. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase[J]. Energy & Fuels, 2001, 15(2): 309-316. |
72 | RAMANAN R, KANNAN K, SIVANESAN S D, et al. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii [J]. World Journal of Microbiology and Biotechnology, 2009, 25(6): 981-987. |
73 | 李娟, 张琳, 孙莹, 等. 固定化CA催化吸收模拟烟气中CO2实验研究[J]. 化工进展, 2017, 36(9): 3502-3507. |
LI Juan, ZHANG Lin, SUN Ying, et al. Experimental studies on catalytic absorption of CO2 in simulated flue gas by immobilized carbonic anhydrase[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3502-3507. | |
74 | 黄志华, 刘铭, 王宝光, 等. 甲酸脱氢酶用于辅酶NADH再生的研究进展[J]. 过程工程学报, 2006, 6(6): 1011-1016. |
HUANG Zhihua, LIU Ming, WANG Baoguang, et al. Formate dehydrogenase and its application in cofactor NADH regeneration[J]. The Chinese Journal of Process Engineering, 2006, 6(6): 1011-1016. | |
75 | AMAO Yutaka. Formate dehydrogenase for CO2 utilization and its application[J]. Journal of CO2 Utilization, 2018, 26: 623-641. |
76 | CASTILLO R, OLIVA M, MARTÍ S, et al. A theoretical study of the catalytic mechanism of formate dehydrogenase[J]. The Journal of Physical Chemistry B, 2008, 112(32): 10012-10022. |
77 | POPOV V O, LAMZIN V S. NAD+-dependent formate dehydrogenase[J]. The Biochemical journal, 1994, 301: 625-643. |
78 | TISHKOV Vl I, POPOV V O. Protein engineering of formate dehydrogenase[J]. Biomolecular Engineering, 2006, 23(2): 89-110. |
79 | ALPDAĞTAŞ S, YÜCEL S, KAPKAÇ H A, et al. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929[J]. Biotechnology Letters, 2018, 40(7): 1135-1147. |
80 | ŸZGÜN G, KARAGÜLER N G, TURUNEN O, et al. Characterization of a new acidic NAD+-dependent formate dehydrogenase from thermophilic fungus Chaetomium thermophilum [J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 122: 212-217. |
81 | ALTAŞ N, ASLAN A S, KARATAŞ E, et al. Heterologous production of extreme alkaline thermostable NAD+-dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila [J]. Process Biochemistry, 2017, 61: 110-118. |
82 | TISHKOV V I, POPOV V O. Catalytic mechanism and application of formate dehydrogenase[J]. Biochemistry (Moscow), 2004, 69(11): 1252. |
83 | SLUSARCZYK Heike, FELBER Stephan, KULA Maria-regina, et al. Novel mutants of the formate dehydrogenase from Candida boidinii : US20030157664[P]. 2003-08-21. |
84 | 丁雪峰. 热稳定性增强的甲酸脱氢酶突变体及其制备方法: CN104342406A[P]. 2015-02-11. |
DING Xuefeng. Mutant formate dehydrogenase with enhanced heat stability and preparation method thereof: CN104342406A[P]. 2015-02-11. | |
85 | ROJKOVA A M, GALKIN A G, KULAKOVA L B, et al. Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha-helices[J]. FEBS Letters, 1999, 445(1): 183-188. |
86 | ALEKSEEVA A A, SERENKO A A, KARGOV I S, et al. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations[J]. Protein Engineering, Design and Selection, 2012, 25(11): 781-788. |
87 | KURT Sinem, ORDU Emel. Effect of Met/Leu substitutions on the stability of NAD+-dependent formate dehydrogenases from Gossypium hirsutum [J]. Applied Microbiology and Biotechnology, 2021, 105(7): 2787-2798. |
88 | NETTO C G, NAKAMURA M, ANDRADE L H, et al. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 84: 136-143. |
89 | PIETRICOLA Giuseppe, OTTONE Carminna, FINO Debora, et al. Enzymatic reduction of CO2 to formic acid using FDH immobilized on natural zeolite[J]. Journal of CO2 Utilization, 2020, 42: 101343. |
90 | PIETRICOLA Giuseppe, TOMMASI Tonia, DOSA Melodj, et al. Synthesis and characterization of ordered mesoporous silicas for the immobilization of formate dehydrogenase (FDH)[J]. International Journal of Biological Macromolecules, 2021, 177: 261-270. |
91 | BINAY Barış, Dilek ALAGÖZ, YILDIRIM Deniz, et al. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH[J]. Beilstein Journal of Organic Chemistry, 2016, 12: 271-277. |
92 | Dilek ALAGÖZ, Ayhan ÇELIK, YILDIRIM Deniz, et al. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 130: 40-47. |
93 | LIN Peng, ZHANG Yonghui, YAO Guangxiao, et al. Immobilization of formate dehydrogenase on polyethylenimine-grafted graphene oxide with kinetics and stability study[J]. Engineering in Life Sciences, 2020, 20(3/4): 104-111. |
94 | YILDIRIM Deniz, Dilek ALAGÖZ, TOPRAK Ali, et al. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization[J]. Process Biochemistry, 2019, 85: 97-105. |
95 | 宋艳艳, 孔维宝, 宋昊, 等. 磁性壳聚糖微球的制备及其用于甲酸脱氢酶的固定化[J]. 工业催化, 2012, 20(8): 20-25. |
SONG Yanyan, KONG Weibao, SONG Hao, et al. Preparation of magnetic chitosan microspheres and their application to immobilization of formate dehydrogenase[J]. Industrial Catalysis, 2012, 20(8): 20-25. | |
96 | YOSHIMOTO Makoto, YAMASHITA Takayuki, YAMASHIRO Takuya. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow[J]. Biotechnology Progress, 2010, 26(4): 1047-1053. |
97 | KIM M H, PARK S, KIM Y H, et al. Immobilization of formate dehydrogenase from Candida boidinii through cross-linked enzyme aggregates[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 97: 209-214. |
98 | CHOE H, JOO J C, CHO D H, et al. Efficient CO2-reducing activity of NAD+-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas[J]. PLOS ONE, 2014, 9(7): e103111. |
99 | 刘文芳, 侯延慧, 侯本象, 等. 酶催化CO2序列还原为甲醛[J]. 中国化学工程学报(英文版), 2014, 22(S1): 1328-1332. |
LIU Wenfang, HOU Yanhui, HOU Benxiang, et al. Enzyme-catalyzed sequential reduction of carbon dioxide to formaldehyde[J]. Chinese Journal of Chemical Engineering, 2014, 22(S1): 1328-1332. | |
100 | CHEN Yijing, LI Peng, Hyunho NOH, et al. Stabilization of formate dehydrogenase in a metal-organic framework for bioelectrocatalytic reduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(23): 7682-7686. |
101 | SLUSARCZYK H, FELBER S, KULA M R, et al. Stabilization of NAD+-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues[J]. European Journal of Biochemistry, 2000, 267(5): 1280-1289. |
102 | WANG Yanzi, LI Manfeng, ZHAO Zhiping, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 116: 89-94. |
103 | ADDO P K, ARECHEDERRA R L, WAHEED A, et al. Methanol production via bioelectrocatalytic reduction of carbon dioxide: Role of carbonic anhydrase in improving electrode performance[J]. Electrochemical Solid-State Letters, 2011, 14(4): E9. |
104 | GAO Song, MOHAMMAD Munirah, YANG Haocheng, et al. Janus reactors with highly efficient enzymatic CO2 nanocascade at air-liquid interface[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42806-42815. |
105 | REN Sizhu, WANG Ziyuan, BILAL Muhammad, et al. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2 [J]. International Journal of Biological Macromolecules, 2020, 155: 110-118. |
106 | WANG Jing, Yongqin LYU. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule[J]. Chinese Journal of Chemical Engineering, 2021, 29: 317-325. |
107 | CHAI Milton, RAZMJOU Amir, CHEN Vicki. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor[J]. Journal of Membrane Science, 2021, 623: 118986. |
108 | ZHANG Xiaonan, SHAO Wenxuan, CHEN Biqiang, et al. Cross-linking of carbonic anhydrase and formate dehydrogenase based on amino acid specific recognition: Conversion of carbon dioxide to formic acid[J]. Enzyme and Microbial Technology, 2021, 146: 109763. |
109 | MAO Menglei, ZHAI Tingting, MENG Lingding, et al. Controllable preparation of mesoporous silica and its application in enzyme-catalyzed CO2 reduction[J]. Chemical Engineering Journal, 2022, 437: 135479. |
[1] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[2] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[3] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[4] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[5] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[6] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[7] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[8] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[9] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[10] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[11] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[12] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[13] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[14] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[15] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |