化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2504-2510.DOI: 10.16085/j.issn.1000-6613.2021-0958
刘星园1(), 张永锋1,2(), 肖凯1,2, 高境泽1,2
收稿日期:
2021-05-06
修回日期:
2021-07-02
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
张永锋
作者简介:
刘星园(1996—),女,硕士研究生,研究方向为分子筛吸附治理VOCs。E-mail:基金资助:
LIU Xingyuan1(), ZHANG Yongfeng1,2(), XIAO Kai1,2, GAO Jingze1,2
Received:
2021-05-06
Revised:
2021-07-02
Online:
2022-05-05
Published:
2022-05-24
Contact:
ZHANG Yongfeng
摘要:
挥发性有机化合物(VOCs)的大量排放对我国大气环境已造成严重污染。本文综述了针对工业VOCs排放浓度低、风量大、含水等特点,分子筛作为较成熟的吸附材料在VOCs吸附处理中的应用。影响分子筛吸附VOCs的因素有孔径结构、表面性质、疏水性等。研究表明,与吸附质动力学尺寸相匹配的孔径和具有多级孔的分子筛吸附性能优良,引入适宜补偿阳离子也可加强吸附。文中指出:提高硅铝比或硅烷化改性来提高分子筛疏水性以及免除模板剂使用,降低成本,减小污染成为当下发展主流;在制备方法上打破传统水热合成法,使用固相法、微波辅助、晶种导入来降低能耗,实现绿色合成已成为新兴话题;研发多功能整体式材料以及吸附法和多种方法相结合来处理VOCs已成为未来发展趋势。
中图分类号:
刘星园, 张永锋, 肖凯, 高境泽. 分子筛材料在VOCs吸附中的研究进展[J]. 化工进展, 2022, 41(5): 2504-2510.
LIU Xingyuan, ZHANG Yongfeng, XIAO Kai, GAO Jingze. Research progress of molecular sieve materials in the adsorption of VOCs[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2504-2510.
制备方法 | 优点 | 缺点 |
---|---|---|
水热合成法 | 发展相对成熟 | 高成本、有污染、不安全、能耗高 |
固相合成法 | 成本低、降低污染 | 条件复杂、有待发展 |
微波辅助法 | 缩短晶化时间、受热均匀,效率高、能耗低 | 产率有待提高、晶化 过程不易控制 |
晶种导入法 | 替代有机模板剂,降低污染 | 成本高、不利于工业化 |
表2 分子筛制备方法优缺点
制备方法 | 优点 | 缺点 |
---|---|---|
水热合成法 | 发展相对成熟 | 高成本、有污染、不安全、能耗高 |
固相合成法 | 成本低、降低污染 | 条件复杂、有待发展 |
微波辅助法 | 缩短晶化时间、受热均匀,效率高、能耗低 | 产率有待提高、晶化 过程不易控制 |
晶种导入法 | 替代有机模板剂,降低污染 | 成本高、不利于工业化 |
1 | 江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532. |
JIANG Mei, ZOU Lan, LI Xiaoqian, et al. Definition and control indicators of volatile organic compounds in China[J]. Environmental Science, 2015, 36(9): 3522-3532. | |
2 | 钱薇, 张浩哲, 陈超宇, 等. 活性炭和分子筛吸附VOCs的研究进展[J]. 化工生产与技术, 2019, 25(3): 19-23. |
QIAN Wei, ZHANG Haozhe, CHEN Chaoyu, et al. Research on adsorptionof VOCs by activated carbonand molecular sieves[J]. Chemical Production and Technology, 2019, 25(3): 19-23. | |
3 | 薛梦婷, 李勇. VOCs在分子筛上吸附性能的研究进展[J]. 无机盐工业, 2019, 51(5): 12-16. |
XUE Mengting, LI Yong. Research progress on adsorption properties of volatile organic compounds on molecular sieves[J]. Inorganic Chemicals Industry, 2019, 51(5): 12-16. | |
4 | ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Sciences, 2017, 55: 69-75. |
5 | 王慧, 潘志嵛, 陈佳卉, 等. 挥发性有机物治理技术的研究进展[J]. 节能, 2019, 38(6): 90-91. |
WANG Hui, PAN Zhiyu, CHEN Jiahui, et al. Research progress of volatile organic matter treatment technology[J]. Energy Conservation, 2019, 38(6): 90-91. | |
6 | KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs) — A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
7 | 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. |
XI Jinying, WU Junliang, HU Hongying, et al. Application status of industrial VOCs gas treatment techniques[J]. China Environmental Science, 2012, 32(11): 1955-1960. | |
8 | 李智, 王建英, 王勇, 等. NaY沸石分子筛在VOCs处理中的应用[J]. 环境工程学报, 2020, 14(8): 2211-2221. |
LI Zhi, WANG Jianying, WANG Yong, et al. Application of NaY zeolite molecular sieve in VOCs treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2211-2221. | |
9 | 刘帅, 张亚妮, 薛明, 等. 挥发性有机物(VOCs)吸附材料的研究进展[J]. 环境工程, 2021,39(6): 79-89. |
LIU Shuai, ZHANG Yani, XUE Ming, et al. Research progress on adsorption materials for volatile organic compounds (VOCs)[J]. Environmental Engineering, 2021, 39(6): 79-89. | |
10 | 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48(6): 752-760. |
YUE Xu, WANG Sheng, GAO Yang, et al. Thermodynamics analysis on the adsorption behaviors of VOCs on various adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 752-760. | |
11 | 王旭, 吴玉帅, 杨欣, 等. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826. |
WANG Xu, WU Yushuai, YANG Xin, et al. Review of adsorptive removal of volatile organic compounds by zeolite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826. | |
12 | HWANG Y K, CHANG J S, PARK S E, et al. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications[J]. Angewandte Chemie International Edition, 2005, 44(4): 556-560. |
13 | 单志超. 沸石分子筛的形貌控制与催化吸附功能的研究[D]. 长春: 吉林大学, 2011. |
SHAN Zhichao. The morphology control of zeolites and their catalytic, adsorptive function studies[D]. Changchun: Jilin University, 2011. | |
14 | 岳旭, 王胜, 刘旭, 等. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报, 2020, 48(1): 120-128. |
YUE Xu, WANG Sheng, LIU Xu, et al. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128. | |
15 | 刘强, 卢文新, 刘佳, 等. 分子筛材料在VOCs治理中的应用研究进展[J]. 化肥设计, 2020, 58(3): 5-8. |
LIU Qiang, LU Wenxin, LIU Jia, et al. Research progress of molecular sieve materials application in VOCs treatment[J]. Chemical Fertilizer Design, 2020, 58(3): 5-8. | |
16 | 苏炜, 韩娜, 陈政利, 等. Hβ分子筛改性及其催化苯和氯化苄反应性能[J]. 石油学报(石油加工), 2020, 36(1): 38-44. |
SU Wei, HAN Na, CHEN Zhengli, et al. Modification of Hβ molecular sieve and its catalytic performance in benzylation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 38-44. | |
17 | LIU Y S, LI Z Y, YANG X, et al. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability[J]. RSC Advances, 2016, 6(25): 21193-21203. |
18 | ZHU L, SHI X C, SONG L J, et al. Mesoporous silica (KIT-6) derivatized with hydroxyquinoline functionalities as a selective adsorbent of uranium(Ⅵ)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(2): 381-392. |
19 | 刘倩, 杜昭, 张美然. 分子筛吸附VOCs与微波脱附性能研究[J]. 河北科技大学学报, 2020, 41(2): 164-171. |
LIU Qian, DU Zhao, ZHANG Meiran. Study on adsorption properties of zeolites for VOCs and microwave desorption[J]. Journal of Hebei University of Science and Technology, 2020, 41(2): 164-171. | |
20 | LUO X L, PEI F, WANG W, et al. Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization[J]. Microporous and Mesoporous Materials, 2018, 262: 148-153. |
21 | DAI J Q, ZHAO C, HU X M, et al. One-pot synthesis of meso-microporous ZSM-5 and its excellent performance in VOCs adsorption/desorption[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(1): 78-87. |
22 | FENG A H, YU Y, MI L, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous and Mesoporous Materials, 2019, 280: 211-218. |
23 | FENG A H, YU Y, MI L, et al. Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite[J]. Microporous and Mesoporous Materials, 2019, 290: 109646. |
24 | LI R N, CHONG S J, ALTAF N, et al. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds[J]. Frontiers in Chemistry, 2019, 7: 505. |
25 | LI R N, XUE T S, LI Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. |
26 | BAL’ZHINIMAEV B S, PAUKSHTIS E A, TOKTAREV A V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. |
27 | 洪新, 李云赫, 高畅, 等. 不同硅铝比ZSM-5的合成及其吸附脱除柴油中苯胺和吡啶的性能[J]. 燃料化学学报, 2018, 46(10): 1184-1192. |
HONG Xin, LI Yunhe, GAO Chang, et al. Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1184-1192. | |
28 | 李梦瑶. HZSM-5分子筛用于间甲酚和对甲酚吸附分离的研究[D]. 太原: 太原理工大学, 2019. |
LI Mengyao. Study on adsorption separation of m-cresol and p-cresol with HZSM-5 molecular sieve[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
29 | 吴琼, 栾志强, 戴荣继, 等. 用蒙特卡罗模拟方法研究环氧乙烷在HZSM-5分子筛上的吸附行为[J]. 北京理工大学学报, 2018, 38(3): 325-330. |
WU Qiong, LUAN Zhiqiang, DAI Rongji, et al. Monte Carlo simulation for the adsorption behavior of ethylene oxide on HZSM-5 zeolite[J]. Transactions of Beijing Institute of Technology, 2018, 38(3): 325-330. | |
30 | YIN T, MENG X, JIN L P, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. |
31 | LIU S, PENG Y, CHEN J J, et al. Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent[J]. Journal of Materials Chemistry A, 2018, 6(28): 13769-13777. |
32 | EGAN P J, MULLIN M. Recent improvement and projected worsening of weather in the United States[J]. Nature, 2016, 532(7599): 357-360. |
33 | LIU S, PENG Y, YAN T, et al. Modified silica adsorbents for toluene adsorption under dry and humid conditions: impacts of pore size and surface chemistry[J]. Langmuir, 2019, 35(27): 8927-8934. |
34 | WANG S, BAI P, WEI Y Z, et al. Three-dimensional-printed core-shell structured MFI-type zeolite monoliths for volatile organic compound capture under humid conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38955-38963. |
35 | 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. |
ZHANG Yuanyuan, WANG Lili, HE Li, et al. Modification of zeolite and adsorption of toluene under high humidity condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5509-5514. | |
36 | 刘才林, 李承龙, 杨海君, 等. 纯硅分子筛的合成及其硅烷化改性研究[J]. 化工新型材料, 2014, 42(9): 132-134. |
LIU Cailin, LI Chenglong, YANG Haijun, et al. Study on the synthesis and silanization modification of pure-silica molecular sieve[J]. New Chemical Materials, 2014, 42(9): 132-134. | |
37 | 陈艳红, 于庆君, 许孝玲. 分子筛材料的合成及应用[M]. 北京: 石油工业出版社, 2018. |
CHEN Yanhong, YU Qingjun, XU Xiaoling. Synthesis and application of molecular sieve materials[M]. Beijing: Petroleum Industry Press, 2018. | |
38 | VEERAPANDIAN S K P, DE GEYTER N, GIRAUDON J M, et al. The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review[J]. Catalysts, 2019, 9(1): 98. |
39 | HYLA A S, FANG H J, BOULFELFEL S E, et al. Significant temperature dependence of the isosteric heats of adsorption of gases in zeolites demonstrated by experiments and molecular simulations[J]. The Journal of Physical Chemistry C, 2019, 123(33): 20405-20412. |
40 | JIANG N, SHANG R, HEIJMAN S G J, et al. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review[J]. Water Research, 2018, 144: 145-161. |
41 | KIM J J, LIM S J, AHN H, et al. Adsorption equilibria and kinetics of propane and propylene on zeolite 13X pellets[J]. Microporous and Mesoporous Materials, 2019, 274: 286-298. |
42 | 袁世阳. 金属掺杂ZSM-5分子筛制备及脱硫性能研究[D]. 开封: 河南大学, 2018. |
YUAN Shiyang. Study on preparation and desulfurization properties of metal doping ZSM-5 zeolite[D]. Kaifeng: Henan University, 2018. | |
43 | 崔世强, 闫锋, 张柏慧, 等. 改性ZSM-5对石脑油中有机氯吸附性能[J]. 精细石油化工, 2019, 36(4): 35-40. |
CUI Shiqiang, YAN Feng, ZHANG Baihui, et al. Study on adsorption of organochlorine in naphtha by modified ZSM-5 zeolite[J]. Speciality Petrochemicals, 2019, 36(4): 35-40. | |
44 | LUAN H M, LEI C, MA Y, et al. Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents[J]. Chinese Journal of Catalysis, 2021, 42(4): 563-570. |
45 | 刘雷璐. 高硅ZSM-5分子筛的固相研磨法合成及其VOCs吸附性能研究[D]. 广州: 华南理工大学, 2020. |
LIU Leilu. Solid phase grinding synthesis of high-silica ZSM-5 zeolites and its adsorption properties of VOCs[D]. Guangzhou: South China University of Technology, 2020. | |
46 | 赵杉林, 张扬建, 孙桂大, 等. ZSM-5沸石分子筛的微波辐射法合成与表征[J]. 石油学报(石油加工), 1999, 15(3): 89-91. |
ZHAO Shanlin, ZHANG Yangjan, SUN Guida, et al. Characterization and synthesis of zeolite ZSM - 5 by microwave radiation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1999, 15(3): 89-91. | |
47 | 王燕, 王政, 李云峰. ZSM-5型分子筛的微波合成与表征[J]. 承德医学院学报, 2012, 29(4): 406-407. |
WANG Yan, WANG Zheng, LI Yunfeng. Synthesis and characterization of ZSM-5 zeolite by microwave[J]. Journal of Chengde Medical College, 2012, 29(4): 406-407. | |
48 | 王琦旗. 以粉煤灰为铝源纳米级ZSM-5分子筛的合成调控[D]. 大庆: 东北石油大学, 2017. |
WANG Qiqi. Crystal growth control of nano-ZSM-5 zeolite with Al(OH)3 as aluminum source derived from coal fly ash[D]. Daqing: Northeast Petroleum University, 2017. | |
49 | 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. |
FENG Yongchao, YU Qingjun, YI Honghong, et al. Research progress of MFI-type zeolites in the field of VOCs removal[J]. Materials Reports, 2020, 34(17): 17089-17098. | |
50 | 刘双, 卜龙利, 宁珂, 等. 整体式分子筛基催化剂制备及其微波催化燃烧VOCs[J]. 中国环境科学, 2020, 40(11): 4688-4696. |
LIU Shuang, BO Longli, NING Ke, et al. Preparation and application of monolithic molecular sieve-based catalysts in microwave catalytic combustion of VOCs[J]. China Environmental Science, 2020, 40(11): 4688-4696. | |
51 | 周为莉, 叶明华, 余锋进, 等. 有机废气处理技术研究进展[J]. 能源工程, 2018(5): 55-61. |
ZHOU Weili, YE Minghua, YU Fengjin, et al. Research progress of organic waste gas treatment technologies[J]. Energy Engineering, 2018(5): 55-61. | |
52 | 许伟, 刘军利, 孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展, 2016, 35(4): 1223-1229. |
XU Wei, LIU Junli, SUN Kang. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1223-1229. | |
53 | 孙振海, 李滨, 郭春垒, 等. 介孔氧化硅分子筛吸附性能研究进展 [J]. 化工新型材料, 2022(3): 271-276. |
SUN Zhenhai, LI Bin, GUO Chunlei, et al. Research progress on adsorption properties of mesoporous silica molecular sieves [J].New Chemical Materials, 2022(3): 271-276. | |
54 | 冷星月, 胡彩虹, 王炜月, 等. 低浓度挥发性有机物吸附浓缩材料的研究进展[J]. 化工进展, 2020, 39(S2): 336-345. |
LENG Xingyue, HU Caihong, WANG Weiyue, et al. Recent advance in low concentration volatile organic compounds adsorption and concentration materials[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 336-345. | |
55 | 任超, 高君安, 潘利鹏, 等. 典型挥发性有机物在疏水Y分子筛上的吸/脱附研究[J]. 煤化工, 2020, 48(4): 19-23. |
REN Chao, GAO Jun’an, PAN Lipeng, et al. Study on adsorption/desorption of typical volatile organic compounds on hydrophobic Y zeolites[J]. Coal Chemical Industry, 2020, 48(4): 19-23. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[5] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[7] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[10] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[11] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[12] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[13] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[14] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |