化工进展 ›› 2022, Vol. 41 ›› Issue (4): 2102-2114.DOI: 10.16085/j.issn.1000-6613.2021-0811
收稿日期:
2021-04-18
修回日期:
2021-09-06
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
王建友
作者简介:
董林(1996—),男,硕士研究生,研究方向为水污染控制与资源化。E-mail:基金资助:
DONG Lin(), CHEN Qingbai, WANG Jianyou(), LI Pengfei, WANG Jin
Received:
2021-04-18
Revised:
2021-09-06
Online:
2022-04-23
Published:
2022-04-25
Contact:
WANG Jianyou
摘要:
电渗析苦咸水淡化技术具有脱盐效果好、成本较低、绿色环保等优点,但存在制膜工艺繁琐、传质模型不够精确、能效有待提升等问题。本文首先分析了苦咸水电渗析用离子交换膜的制备及改性方法,对膜材料存在的问题进行了探讨。综述对比了苦咸水电渗析在简化模型、理论模型、半经验模型方面的原理及最新进展,系统总结了常规苦咸水电渗析过程的运行方式和工艺优化策略,并进一步介绍了以新型电去离子、冲击电渗析、可再生能源驱动电渗析为代表的新型电渗析过程在苦咸水淡化方面的原理及应用。在此基础上,提出了今后的研究方向集中于降低制膜成本、优化传质模型、探究集成膜法淡化工艺以及新型电渗析过程等方面。
中图分类号:
董林, 陈青柏, 王建友, 李鹏飞, 王进. 电渗析苦咸水淡化技术研究进展[J]. 化工进展, 2022, 41(4): 2102-2114.
DONG Lin, CHEN Qingbai, WANG Jianyou, LI Pengfei, WANG Jin. Research progress in brackish water electrodialysis desalination technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2102-2114.
1 | 崔丙健, 高峰, 胡超, 等. 非常规水资源农业利用现状及研究进展[J]. 灌溉排水学报, 2019, 38(7): 60-68. |
CUI Bingjian, GAO Feng, HU Chao, et al. The use of brackish and reclaimed waste water in agriculture: a review[J]. Journal of Irrigation and Drainage, 2019, 38(7): 60-68. | |
2 | ABUHABIB A A, GHASEMI M, MOHAMMAD A W, et al. Desalination of brackish water using nanofiltration: performance comparison of different membranes[J]. Arabian Journal for Science and Engineering, 2013, 38(11): 2929-2939. |
3 | 麦正军, 赵志伟, 彭伟, 等. 苦咸水淡化工艺的应用研究进展[J]. 兵器装备工程学报, 2017, 38(1): 174-177. |
Zhengjun MAI, ZHAO Zhiwei, PENG Wei, et al. Progress in investigation and application of brackish water desalination technology[J]. Journal of Sichuan Ordnance, 2017, 38(1): 174-177. | |
4 | 陈维利, 王建友, 费兆辉, 等. 倒极电去离子苦咸水淡化技术的试验研究[J]. 水处理技术, 2012, 38(9): 38-42. |
CHEN Weili, WANG Jianyou, FEI Zhaohui, et al. Brackish water desalination by electrodeionization with polarity reversal[J]. Technology of Water Treatment, 2012, 38(9): 38-42. | |
5 | LOPEZ A M, WILLIAMS M, PAIVA M, et al. Potential of electrodialytic techniques in brackish desalination and recovery of industrial process water for reuse[J]. Desalination, 2017, 409: 108-114. |
6 | 葛倩倩, 葛亮, 汪耀明, 等. 离子交换膜的发展态势与应用展望[J]. 化工进展, 2016, 35(6): 1774-1785. |
GE Qianqian, GE Liang, WANG Yaoming, et al. Perspective in ion exchange membranes[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1774-1785. | |
7 | MEI Y, TANG C Y. Recent developments and future perspectives of reverse electrodialysis technology: a review[J]. Desalination, 2018, 425: 156-174. |
8 | XU T W. Ion exchange membranes: state of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1/2): 1-29. |
9 | KARIDURAGANAVAR M Y, NAGARALE R K, KITTUR A A, et al. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications[J]. Desalination, 2006, 197(1/2/3): 225-246. |
10 | SHUKLA G, SHAHI V K. Sulfonated poly(ether ether ketone)/imidized graphene oxide composite cation exchange membrane with improved conductivity and stability for electrodialytic water desalination[J]. Desalination, 2019, 451: 200-208. |
11 | ZHAO J L, REN L Y, CHEN Q B, et al. Fabrication of cation exchange membrane with excellent stabilities for electrodialysis: a study of effective sulfonation degree in ion transport mechanism[J]. Journal of Membrane Science, 2020, 615: 118539. |
12 | ZHAO J L, WANG J Y, SUN L Q, et al. Novel low-cost cation exchange membrane containing hydrophilic cross-linked structure for enhanced electrodialysis properties[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 269-276. |
13 | LIU Y, WANG J Y. Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis[J]. Journal of Membrane Science, 2020, 596: 117591. |
14 | SINGH A K, KUMAR S, BHUSHAN M, et al. High performance cross-linked dehydro-halogenated poly(vinylidene fluoride-co-hexafluoro propylene) based anion-exchange membrane for water desalination by electrodialysis[J]. Separation and Purification Technology, 2020, 234: 116078. |
15 | WEI B W, PAN J C, FENG J, et al. Highly conductive and permselective anion exchange membranes for electrodialysis desalination with series-connected dications appending flexible hydrophobic tails[J]. Desalination, 2020, 474: 114184. |
16 | WEI B W, FENG J, CHEN C D, et al. Highly permselective tadpole-type ionic anion exchange membranes for electrodialysis desalination[J]. Journal of Membrane Science, 2020, 600: 117861. |
17 | 杨金涛, 王章忠, 卜小海, 等. 离子交换膜的改性研究进展[J]. 膜科学与技术, 2019, 39(3): 150-156. |
YANG Jintao, WANG Zhangzhong, BU Xiaohai, et al. State of the art for modification of ion exchange membrane[J]. Membrane Science and Technology, 2019, 39(3): 150-156. | |
18 | ZHAO J L, SUN L Q, CHEN Q B, et al. Modification of cation exchange membranes with conductive polyaniline for electrodialysis applications[J]. Journal of Membrane Science, 2019, 582:211-223. |
19 | JIANG W B, LIN L, XU X S, et al. Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis[J]. Journal of Membrane Science, 2019, 572: 545-556. |
20 | XU X S, HE Q, MA G Y, et al. Selective separation of mono- and di-valent cations in electrodialysis during brackish water desalination: bench and pilot-scale studies[J]. Desalination, 2018, 428: 146-160. |
21 | CSERI L, BAUGH J, ALABI A, et al. Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis[J]. Journal of Materials Chemistry A, 2018, 6(48): 24728-24739. |
22 | HAO L, CHI Z X, WANG J Y. Multilayered surface modification of anion exchange membrane by MoS2 flakes for improved antifouling performance[J]. Chemical Engineering Research and Design, 2021, 171: 349-357. |
23 | VASELBEHAGH M, KARKHANECHI H, MULYATI S, et al. Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process[J]. Desalination, 2014, 332: 126-133. |
24 | RUAN H M, ZHENG Z H, PAN J F, et al. Mussel-inspired sulfonated polydopamine coating on anion exchange membrane for improving permselectivity and anti-fouling property[J]. Journal of Membrane Science, 2018, 550: 427-435. |
25 | LIU Y W, YANG S S, CHEN Y, et al. Preparation of water-based anion-exchange membrane from PVA for antifouling in the electrodialysis process[J]. Journal of Membrane Science, 2019, 570-571: 130-138. |
26 | ZHAO J L, CHEN Q B, REN L Y, et al. Fabrication of hydrophilic cation exchange membrane with improved stability for electrodialysis: an excellent anti-scaling performance[J]. Journal of Membrane Science, 2021, 617: 118618. |
27 | KUNRATH C C N, PATROCINIO D C, RODRIGUES M A S, et al. Electrodialysis reversal as an alternative treatment for producing drinking water from brackish river water: a case study in the dry season, northeastern Brazil[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103719. |
28 | TUREK M, DYDO P. Electrodialysis reversal of calcium sulphate and calcium carbonate supersaturated solution[J]. Desalination, 2003, 158(1/2/3): 91-94. |
29 | ELLEUCH M, SISTAT P, POURCELLY G, et al. Brackish water desalination by electrodialysis: opposing scaling[J]. Desalination, 2006, 200(1/2/3): 752-753. |
30 | SANJUAN I, BENAVENTE D, MONTIEL V, et al. Electrochemical softening of concentrates from an electrodialysis brackish water desalination plant: efficiency enhancement using a three-dimensional cathode[J]. Separation and Purification Technology, 2019, 208: 217-226. |
31 | SAYADI I B S, SISTAT P, TLILI M M. Assess of physical antiscale-treatments on conventional electrodialysis pilot unit during brackish water desalination[J]. Chemical Engineering and Processing: Process Intensification, 2015, 88: 47-57. |
32 | CAMPIONE A, CIPOLLINA A, GURRERI L, et al. A hierarchical model for novel schemes of electrodialysis desalination[J]. Desalination, 2019, 465: 79-93. |
33 | LEE H, SARFERT F, STRATHMANN H, et al. Designing of an electrodialysis desalination plant[J]. Desalination, 2002, 142(3): 267-286. |
34 | SADRZADEH M, KAVIANI A, MOHAMMADI T. Mathematical modeling of desalination by electrodialysis[J]. Desalination, 2007, 206(1/2/3): 538-546. |
35 | QURESHI B A, ZUBAIR S M. Design of electrodialysis desalination plants by considering dimensionless groups and variable equivalent conductivity[J]. Desalination, 2018, 430: 197-207. |
36 | TSIAKIS P, PAPAGEORGIOU L G. Optimal design of an electrodialysis brackish water desalination plant[J]. Desalination, 2005, 173(2): 173-186. |
37 | QASEM N A, QURESHI B A, ZUBAIR S M. Improvement in design of electrodialysis desalination plants by considering the Donnan potential[J]. Desalination, 2018, 441: 62-76. |
38 | TEDESCO M, HAMELERS H, BIESHEUVEL P. Nernst-Planck transport theory for (reverse) electrodialysis: Ⅰ. Effect of co-ion transport through the membranes[J]. Journal of Membrane Science, 2016, 510: 370-381. |
39 | CAMPIONE A, GURRERI L, CIOFALO M, et al. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. |
40 | 祝海涛, 杨波, 高从堦. 电渗析过程传质模型的研究进展[J]. 化工进展, 2020, 39(3): 815-823. |
ZHU Haitao, YANG Bo, GAO Congjie. Research progress on mass transfer models for electrodialysis process[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 815-823. | |
41 | AUCLAIR B, NIKONENKO V, LARCHTE C, et al. Correlation between transport parameters of ion-exchange membranes[J]. Journal of Membrane Science, 2002, 195: 89-102. |
42 | KARGOL A. Modified Kedem-Katchalsky equations and their applications[J]. Journal of Membrane Science, 2000, 174: 43-53. |
43 | ZOURMAND Z, FARIDIRAD F, KASIRI N, et al. Mass transfer modeling of desalination through an electrodialysis cell[J]. Desalination, 2015, 359: 41-51. |
44 | FAN H, YIP N Y. Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes[J]. Journal of Membrane Science, 2019, 573: 668-681. |
45 | TANAKA Y, REIG M, CASAS S, et al. Computer simulation of ion-exchange membrane electrodialysis for salt concentration and reduction of RO discharged brine for salt production and marine environment conservation[J]. Desalination, 2015, 367: 76-89. |
46 | GHORBANI A, GHASSEMI A. Brackish water desalination using electrodialysis: predictive mass transfer and concentration distribution model along the electrodialyzer[J]. Water Science & Technology, 2018, 77(3): 597-607. |
47 | WRIGHT N C, SHAH S R, AMROSE S E, et al. A robust model of brackish water electrodialysis desalination with experimental comparison at different size scales[J]. Desalination, 2018, 443: 27-43. |
48 | CHEHAYEB K M, FARHAT D M, NAYAR K G, et al. Optimal design and operation of electrodialysis for brackish-water desalination and for high-salinity brine concentration[J]. Desalination, 2017, 420: 167-182. |
49 | SHAH S R, WRIGHT N C, NEPSKY P A, et al. Cost-optimal design of a batch electrodialysis system for domestic desalination of brackish groundwater[J]. Desalination, 2018, 443: 198-211. |
50 | SHAH S R, WALTER S L, WINTER V A G. Using feed-forward voltage-control to increase the ion removal rate during batch electrodialysis desalination of brackish water[J]. Desalination, 2019, 457: 2-74. |
51 | TONDEUR D, KVAALEN E. Equipartition of entropy production. An optimality criterion for transfer and separation processes[J]. Industrial & Engineering Chemistry Research, 1987, 26(1): 50-56. |
52 | CHEHAYEB K M, NAYAR K G, LIENHARD V J H. On the merits of using multi-stage and counterflow electrodialysis for reduced energy consumption[J]. Desalination, 2018, 439: 1-16. |
53 | CHEN Q B, WANG J Y, LIU Y, et al. Novel energy-efficient electrodialysis system for continuous brackish water desalination: innovative stack configurations and optimal inflow modes[J]. Water Research, 2020, 179: 115847. |
54 | LIU J, YUAN J S, JI Z Y, et al. Concentrating brine from seawater desalination process by nanofiltration-electrodialysis integrated membrane technology[J]. Desalination, 2016, 390: 53-61. |
55 | ZHAO S F, HU S G, ZHANG X F, et al. Integrated membrane system without adding chemicals for produced water desalination towards zero liquid discharge[J]. Desalination, 2020, 496: 114693. |
56 | MCGOVERN R K, ZUBAIR S M, LIENHARD V J H. The benefits of hybridising electrodialysis with reverse osmosis[J]. Journal of Membrane Science, 2014, 469: 326-335. |
57 | THAMPY S, DESALE G R, SHAHI V K, et al. Development of hybrid electrodialysis-reverse osmosis domestic desalination unit for high recovery of product water[J]. Desalination, 2011, 282: 104-108. |
58 | AHMED F E, HASHAIKEH R, HILAL N. Hybrid technologies: the future of energy efficient desalination—A review[J]. Desalination, 2020, 495: 114659. |
59 | CHEN M, MEI Y, YU Y Q, et al. An internal-integrated RED/ED system for energy-saving seawater desalination: a model study[J]. Energy, 2019, 170: 139-148. |
60 | WANG Q, GAO X L, ZHANG Y S, et al. Hybrid RED/ED system: simultaneous osmotic energy recovery and desalination of high-salinity wastewater[J]. Desalination, 2017, 405: 59-67. |
61 | LIU Y, WANG J Y, SUN X H. Energy-saving "NF/EDR" integrated membrane process for seawater desalination Part Ⅰ. Seawater desalination by NF membrane with high desalination capacity[J]. Desalination, 2016, 397: 165-173. |
62 | LIU Y, WANG J Y. Energy-saving “NF/EDR” integrated membrane process for seawater desalination Part Ⅱ. The optimization of ED process[J]. Desalination, 2017, 422: 142-152. |
63 | LIU Y, WANG J Y, WANG L D. An energy-saving “nanofiltration/electrodialysis with polarity reversal (NF/ EDR)” integrated membrane process for seawater desalination Part Ⅲ. Optimization of the energy consumption in a demonstration operation[J]. Desalination, 2019, 452: 230-237. |
64 | ZHENG X Y, PAN S Y, TSENG P C, et al. Optimization of resin wafer electrodeionization for brackish water desalination[J]. Separation and Purification Technology, 2018, 194: 346-354. |
65 | WOOD J, GIFFORD J, ARBA J, et al. Production of ultrapure water by continuous electrodeionization[J]. Desalination, 2010, 250(3): 973-976. |
66 | MCGOVERN R K, WEINER A M, SUN L, et al. On the cost of electrodialysis for the desalination of high salinity feeds[J]. Applied Energy, 2014, 136: 649-661. |
67 | VENUGOPAL K, DHARMALINGAM S. Evaluation of synthetic salt water desalination by using a functionalized polysulfone based bipolar membrane electrodialysis cell[J]. Desalination, 2014, 344: 189-197. |
68 | SUN X H, LU H X, WANG J Y. Brackish water desalination using electrodeionization reversal[J]. Chemical Engineering and Processing: Process Intensification, 2016, 104: 262-270. |
69 | SCHLUMPBERGER S, LU N B, SUSS M E, et al. Scalable and continuous water deionization by shock electrodialysis[J]. Environmental Science and Technology Letters, 2015, 2(12): 367-372. |
70 | DENG D S, AOUAD W, BRAFF W A, et al. Water purification by shock electrodialysis: deionization, filtration, separation, and disinfection[J]. Desalination, 2015, 357: 77-83. |
71 | DYDEK E V, ZALTZMAN B, RUBINSTEIN I, et al. Overlimiting current in a microchannel[J]. Physical Review Letters, 2011, 107(11): 118301. |
72 | ALKHADRA M A, GAO T, CONFORTI K M, et al. Small-scale desalination of seawater by shock electrodialysis[J]. Desalination, 2020, 476: 114219. |
73 | DENG D S, DYDEK E V, HAN J H, et al. Overlimiting current and shock electrodialysis in porous media[J]. Langmuir, 2013, 29(52): 16167-16177. |
74 | MANI A, BAZANT M Z. Deionization shocks in microstructures[J]. Physical Review E, 2011, 84: 061504. |
75 | TIAN H, ALKHADRA M A, BAZANT M Z. Theory of shock electrodialysis Ⅰ: Water dissociation and electrosmotic vortices[J]. Journal of Colloid and Interface Science, 2021, 589: 605-615. |
76 | TIAN H, ALKHADRA M A, BAZANT M Z. Theory of shock electrodialysis Ⅱ: Mechanisms of selective ion removal[J]. Journal of Colloid and Interface Science, 2021, 589: 616-621. |
77 | ADIGA M R, ADHIKARY S, NARAYANAN P, et al. Performance analysis of photovoltaic electrodialysis desalination plant at Tanote in Thar desert[J]. Desalination, 1987, 67: 59-66. |
78 | ORTIZ J M, EXPOSITO E, GALLUD F, et al. Photovoltaic electrodialysis system for brackish water desalination: modeling of global process[J]. Journal of Membrane Science, 2006, 274(1/2): 138-149. |
79 | ORTIZ J M, EXPOSITO E, GALLUD F, et al. Electrodialysis of brackish water powered by photovoltaic energy without batteries: direct connection behavior[J]. Desalination, 2007, 208(1/2/3): 89-100. |
80 | ORTIZ J M, EXPOSITO E, GALLUD F, et al. Desalination of underground brackish waters using an electrodialysis system powered directly by photovoltaic energy[J]. Solar Energy Materials & Solar Cells, 2008, 92(12): 1677-1688. |
81 | BIAN D W, WATSON S M, WRIGHT N C, et al. Optimization and design of a low-cost, village-scale, photovoltaic-powered, electrodialysis reversal desalination system for rural India[J]. Desalination, 2019, 452: 265-278. |
82 | HE W, AMROSE S, WRIGHT N C, et al. Field demonstration of a cost-optimized solar powered electrodialysis reversal desalination system in rural India[J]. Desalination, 2020, 476: 114217. |
83 | VEZA J M, PENATE B, CASTELLANO F. Electrodialysis desalination designed for off-grid wind energy[J]. Desalination, 2004, 160(3): 211-221. |
84 | MALEK P, ORTIZ J M, SCHULTE-HERBRUGGEN H M A. Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy[J]. Desalination, 2016, 377: 54-64. |
85 | KHALLA S A, SUSS M. Desalination via chemical energy: an electrodialysis cell driven by spontaneous electrode reactions[J]. Desalination, 2019, 467: 257-262. |
86 | ATLAS I, SUSS M. Theory of simultaneous desalination and electricity generation via an electrodialysis cell driven by spontaneous redox reactions[J]. Electrochimica Acta, 2019, 319: 813-821. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[4] | 孙鲁芹, 卢会霞, 王建友. 电渗析/超滤内在耦合过程分离蛋清中溶菌酶[J]. 化工进展, 2023, 42(5): 2262-2271. |
[5] | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
[6] | 王进, 陈青柏, 王建友, 李鹏飞, 董林. 压力驱动及电驱动膜法水软化技术研究现状与展望[J]. 化工进展, 2022, 41(5): 2649-2661. |
[7] | 张群, 陈重军, 谢嘉玮, 邹馨怡. 高盐废水微生物脱盐池处理研究进展[J]. 化工进展, 2022, 41(2): 974-980. |
[8] | 王敏键, 陈四国, 邵敏华, 魏子栋. 氢燃料电池电催化剂研究进展[J]. 化工进展, 2021, 40(9): 4948-4961. |
[9] | 苏慧超, 张田明, 吴云奇, 徐国荣. 电渗析-超滤耦合技术研究进展[J]. 化工进展, 2020, 39(S2): 1-7. |
[10] | 李旅, 巩守涛, 马艳娇, 张奎博, 张凤祥. 自由体积和微孔调控的阴离子交换膜制备及应用研究进展[J]. 化工进展, 2020, 39(6): 2105-2114. |
[11] | 张世英,刘振,李龙飞. 负载离子液体的阳离子交换膜在烯烃/烷烃分离中的应用[J]. 化工进展, 2020, 39(3): 1090-1094. |
[12] | 祝海涛,杨波,高从堦. 电渗析过程传质模型的研究进展[J]. 化工进展, 2020, 39(3): 815-823. |
[13] | 吴德兵, 徐士鸣, 吴曦, 胡军勇, 冷强, 徐志杰, 金东旭, 王平. 不同单价电解质水溶液对逆电渗析电堆工作特性的影响[J]. 化工进展, 2019, 38(06): 2738-2745. |
[14] | 吕燕,韩建华,田智灏,张旭. 双极膜电渗析法连续制备聚合硫酸铁[J]. 化工进展, 2019, 38(03): 1524-1529. |
[15] | 颜海洋, 汪耀明, 蒋晨啸, 王晓林, 李传润, 吴亮, 徐铜文. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(01): 672-681. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |