化工进展 ›› 2019, Vol. 38 ›› Issue (01): 672-681.DOI: 10.16085/j.issn.1000-6613.2018-1158
颜海洋1,2(),汪耀明1,2(
),蒋晨啸1,王晓林2,李传润2,吴亮1,徐铜文1(
)
收稿日期:
2018-06-01
修回日期:
2018-10-19
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
汪耀明,徐铜文
作者简介:
颜海洋(1990—),男,博士研究生,从事离子膜过程的应用研究。E-mail:<email>oceanyan@mail.ustc.edu.cn</email>。|汪耀明,副研究员,从事膜相关过程的理论与应用研究。E-mail:<email>ymwong@ustc.edu.cn</email>|徐铜文,教授,博士生导师,从事膜材料及过程研究。E-mail:<email>twxu@ustc.edu.cn</email>
基金资助:
Haiyang YAN1,2(),Yaoming WANG1,2(
),Chenxiao JIANG1,Xiaolin WANG2,Chuanrun LI2,Liang WU1,Tongwen XU1(
)
Received:
2018-06-01
Revised:
2018-10-19
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yaoming WANG,Tongwen XU
摘要:
高盐废水“零排放”是当今很多企业需要面临的非常严峻的环保问题,而离子膜电渗析由于其独特的分离机制能够实现高盐废水中无机盐的分离、浓缩和资源化利用,从而实现水和盐的回收利用。本文综述了离子膜电渗析目前在高盐废水“零排放”盐浓缩工艺中的应用情况;展望了电渗析在高盐高COD废水中的应用前景以及新型的电渗析技术如选择性电渗析和双极膜电渗析在混盐分离和盐的资源化利用中的机遇;同时指出离子膜电渗析在大规模应用中仍存在很多挑战,如离子膜性能的提高、电渗析工艺的优化和电渗析设备的投资成本和能耗如何降低。本文将为高盐废水“零排放”提供新思路,同时为离子膜电渗析在高盐废水“零排放”中的规模化应用奠定基础。
中图分类号:
颜海洋, 汪耀明, 蒋晨啸, 王晓林, 李传润, 吴亮, 徐铜文. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(01): 672-681.
Haiyang YAN, Yaoming WANG, Chenxiao JIANG, Xiaolin WANG, Chuanrun LI, Liang WU, Tongwen XU. Ion exchange membrane electrodialysis for high salinity wastewater “zero liquid discharge”: applications, opportunities and challenges[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 672-681.
项目名称 | 时间 | 处理效果及规模 |
---|---|---|
王子纸业废水“零排放” | 2014年 | 固含量从40g/L提高至120g/L,处理后废水100%回收利用,年回收废水1320万吨,年回收杂盐2.38万吨 |
华友湿法冶金废水“零排放” | 2014年 | 处理后废水100%回收利用,年回收废水50万吨;年回收萃取剂9900kg;年回收氯化铵约1.8万吨,作为化肥外售;减少COD排放100t;年回收钴49.5t |
宁夏能化高盐废水“零排放” | 2015年 | 浓水TDS≥200g/L,整体系统回收率≥93%,处理量450m3/h |
纳林河化工工业园区综合水处理 | 2016年 | 化工高盐废水资源化项目,采用进口离子膜,浓水TDS达到240g/L,水回用率达到99.5%,处理量200m3/h |
新疆德兰印染废水“零排放” | 2016年 | 浓水盐含量达到12%,27840m2离子膜,87台膜堆 |
电厂脱硫废水“零排放” | 2016年 | 淡水电导降至1mS/cm,处理量200m3/h,27台膜堆 |
神华煤化工废水“零排放” | 2017年 | 处理后废水100%回收利用,年回收废水330万吨;年回收杂盐约0.95万吨 |
山东淄博广通稀土废水“零排放” | 2017年 | 氯氧化锆废水,9680m2离子膜,40台膜堆 |
山东电镀废水“零排放” | 2017年 | 浓水盐含量达到15%,9600m2离子膜,40台膜堆 |
表1 近年来几个代表性电渗析“零排放”工程案例
项目名称 | 时间 | 处理效果及规模 |
---|---|---|
王子纸业废水“零排放” | 2014年 | 固含量从40g/L提高至120g/L,处理后废水100%回收利用,年回收废水1320万吨,年回收杂盐2.38万吨 |
华友湿法冶金废水“零排放” | 2014年 | 处理后废水100%回收利用,年回收废水50万吨;年回收萃取剂9900kg;年回收氯化铵约1.8万吨,作为化肥外售;减少COD排放100t;年回收钴49.5t |
宁夏能化高盐废水“零排放” | 2015年 | 浓水TDS≥200g/L,整体系统回收率≥93%,处理量450m3/h |
纳林河化工工业园区综合水处理 | 2016年 | 化工高盐废水资源化项目,采用进口离子膜,浓水TDS达到240g/L,水回用率达到99.5%,处理量200m3/h |
新疆德兰印染废水“零排放” | 2016年 | 浓水盐含量达到12%,27840m2离子膜,87台膜堆 |
电厂脱硫废水“零排放” | 2016年 | 淡水电导降至1mS/cm,处理量200m3/h,27台膜堆 |
神华煤化工废水“零排放” | 2017年 | 处理后废水100%回收利用,年回收废水330万吨;年回收杂盐约0.95万吨 |
山东淄博广通稀土废水“零排放” | 2017年 | 氯氧化锆废水,9680m2离子膜,40台膜堆 |
山东电镀废水“零排放” | 2017年 | 浓水盐含量达到15%,9600m2离子膜,40台膜堆 |
1 | LEFEBVRE O , MOLETTA R .Treatment of organic pollution in industrial saline wastewater: a literature review[J].Water Research, 2006, 40(20): 3671-3682. |
2 | WANG Z , LUO G , LI J , et al . Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading[J].Bioresource Technology, 2016, 216: 714-721. |
3 | 姜忠义, 李玉平, 陈志强, 等 . 煤化工废水近零排放与资源化关键技术研究与应用示范[J]. 化工进展, 2016, 35(12): 4099-4100. |
JIANG Zhongyi , LI Yuping , CHEN Zhiqiang , et al . Key technologies study and application demonstration of near-zero-liquid-discharge and resource recovery of coal chemical industry wastewater[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4099-4100. | |
4 | TONG T , ELIMELECH M . The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. |
5 | NAKOA K , RAHAOUI K , DATE A , et al . Sustainable zero liquid discharge desalination (SZLDD)[J]. Solar Energy, 2016, 135: 337-347. |
6 | SHI X , LEONG K Y , NG H Y . Anaerobic treatment of pharmaceutical wastewater: a critical review[J]. Bioresource Technology, 2017, 245: 1238-1244. |
7 | TSAI J H , MACEDONIO F , DRIOLI E , et al . Membrane-based zero liquid discharge: myth or reality?[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 192-202. |
8 | SUBRAMANI A , JACANGELO J G . Emerging desalination technologies for water treatment: a critical review[J]. Water Research, 2015, 75: 164-187. |
9 | GIWA A , DUFOUR V , AL MARZOOQI F , et al . Brine management methods: recent innovations and current status[J]. Desalination, 2017, 407: 1-23. |
10 | CHUNG T , ZHANG S , WANG K , et al . Forward osmosis processes: yesterday, today and tomorrow[J]. Desalination, 2012, 287: 78-81. |
11 | YAO K , QIN Y , YUAN Y , et al . Continuous-effect membrane distillation process based on hollow fiber AGMD module with internal latent-heat recovery[J]. AIChE Journal, 2013, 59(4): 1278-1297. |
12 | XU T , HUANG C . Electrodialysis-based separation technologies: a critical review[J]. AIChE Journal, 2008, 54(12): 3147-3159. |
13 | STRATHMANN H . Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288. |
14 | RAN J , WU L , HE Y , et al . Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291. |
15 | CAMPIONE A , GURRERI L , CIOFALO M , et al . Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. |
16 | ZHANG X , LI C , WANG X , et al . Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: an integration of diffusion dialysis and conventional electrodialysis[J]. Journal of Membrane Science, 2012, 409/410: 257-263. |
17 | YAN H , XUE S , WU C , et al . Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis[J]. Journal of Membrane Science, 2014, 469: 436-446. |
18 | KOTER S , CUCIUREANU A , KULTYS M , et al . Concentration of sodium hydroxide solutions by electrodialysis[J]. Separation Science and Technology, 2012, 47(9): 1405-1412. |
19 | JIANG C , WANG Y , ZHANG Z , et al . Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater[J]. Journal of Membrane Science, 2014, 450: 323-330. |
20 | BITAW T N , PARK K , YANG D R . Optimization on a new hybrid forward osmosis-electrodialysis-reverse osmosis seawater desalination process[J]. Desalination, 2016, 398: 265-281. |
21 | CUI L , LI G , LI Y , et al . Electrolysis-electrodialysis process for removing chloride ion in wet flue gas desulfurization wastewater (DW): influencing factors and energy consumption analysis[J]. Chemical Engineering Research and Design, 2017, 123: 240-247. |
22 | YAO J , WEN D , SHEN J , et al . Zero discharge process for dyeing wastewater treatment[J]. Journal of Water Process Engineering, 2016, 11: 98-103. |
23 | MCGOVERN R K , ZUBAIR S M , LIENHARD V J H . The benefits of hybridising electrodialysis with reverse osmosis[J]. Journal of Membrane Science, 2014, 469: 326-335. |
24 | TANAKA Y . A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water[J]. Desalination, 2009, 249(3): 1039-1047. |
25 | TANAKA Y . A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline wate[J]. Desalination, 2009, 249(2): 809-821. |
26 | TANAKA Y . A computer simulation of feed and bleed ion exchange membrane electrodialysis for desalination of saline water[J]. Desalination, 2010, 254(1/2/3): 99-107. |
27 | ZHANG Y , GHYSELBRECHT K , MEESSCHAERT B , et al . Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation[J]. Journal of Membrane Science, 2011, 378(1/2): 101-110. |
28 | ZHANG Y , GHYSELBRECHT K , VANHERPE R , et al . RO concentrate minimization by electrodialysis: techno-economic analysis and environmental concerns[J]. Journal of Environmental Management, 2012, 107: 28-36. |
29 | REIG M , CASAS S , ALADJEM C , et al . Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis[J]. Desalination, 2014, 342: 107-117. |
30 | ZHANG W , MIAO M , PAN J , et al . Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes[J]. Desalination, 2017, 411: 28-37. |
31 | ZHOU Y , YAN H , WANG X , et al . Electrodialytic concentrating lithium salt from primary resource[J]. Desalination, 2018, 425: 30-36. |
32 | ROTTIERS T , GHYSELBRECHT K , MEESSCHAERT B , et al . Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions[J]. Chemical Engineering Science, 2014, 113: 95-100. |
33 | 汪耀明, 颜海洋, 李为, 等 . 一种通过电渗析技术从煤化工废水中分离盐的方法: CN105906111A[P]. 2016-08-31. |
WANG Yaoming , YAN Haiyang , LI Wei , et al . Method for separating salt from coal-chemical-industry wastewater through electroosmosis technique: CN105606111A[P]. 2016-08-31. | |
34 | HUANG C , XU T . Electrodialysis with bipolar membranes for sustainable[J]. Environmental Science & Technology, 2006, 40: 5233-5243. |
35 | YE W , HUANG J , LIN J , et al . Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent[J]. Separation and Purification Technology, 2015, 144: 206-214. |
36 | GHYSELBRECHT K , SILVA A , VAN DER BRUGGEN B , et al . Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis[J]. Journal of Environmental Management, 2014, 140: 69-75. |
37 | TRAN A T K , MONDAL P , LIN J , et al . Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor[J]. Journal of Membrane Science, 2015, 473: 118-127. |
38 | YANG Y , GAO X , FAN A , et al . An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis[J]. Journal of Membrane Science, 2014, 449: 119-126. |
39 | CHEN B , JIANG C , WANG Y , et al . Selectrodialysis with bipolar membrane for the reclamation of concentrated brine from RO plant [J]. Desalination, 2018, 442: 8-15. |
40 | LU H , LIN C , LEE S , et al . In situ measuring osmosis effect of Selemion CMV/ASV module during ED process of concentrated brine from DSW[J]. Desalination, 2011, 279(1/2/3): 278-284. |
41 | JIANG C , WANG Q , LI Y , et al . Water electro-transport with hydrated cations in electrodialysis[J]. Desalination, 2015, 365: 204-212. |
42 | MIKHAYLIN S , BAZINET L . Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control[J]. Advances in Colloid and Interface Science, 2016, 229: 34-56. |
43 | 任洪艳, 从威 . 电渗析中的膜污染及其控制方法研究进展[J]. 现代化工, 2007, 27(7): 18-22. |
REN Hongyan , CONG Wei . Recent advances in membranes fouling and its prevention in electrodialysis[J]. Modern Chemical Industry, 2007, 27(7): 18-22. | |
44 | YAN H , WU C , WU Y . Separation of alumina alkaline solution by electrodialysis: membrane stack configuration optimization and repeated batch experiments[J]. Separation and Purification Technology, 2015, 139: 78-87. |
45 | MULYATI S , TAKAGI R , FUJII A , et al . Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process[J]. Journal of Membrane Science, 2012, 417/418: 137-143. |
46 | VASELBEHAGH M , KARKHANECHI H , MULYATI S , et al . Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process[J]. Desalination, 2014, 332(1): 126-133. |
47 | TANAKA Y, Concentration polarization in ion-exchange membrane electrodialysis—The events arising in a flowing solution in a desalting cell[J] Journal of Membrane Science, 2003, 216: 149-164. |
48 | TANAKA Y , REIG M , CASAS S , et al . Computer simulation of ion-exchange membrane electrodialysis for salt concentration and reduction of RO discharged brine for salt production and marine environment conservation[J] Desalination, 2015, 367: 76-89. |
49 | WALKER W , KIM Y , LAWLER D , Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis—Part Ⅰ : Sensitivity to superficial velocity[J] Desalination, 2014, 344: 152-162. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[4] | 孙鲁芹, 卢会霞, 王建友. 电渗析/超滤内在耦合过程分离蛋清中溶菌酶[J]. 化工进展, 2023, 42(5): 2262-2271. |
[5] | 王进, 陈青柏, 王建友, 李鹏飞, 董林. 压力驱动及电驱动膜法水软化技术研究现状与展望[J]. 化工进展, 2022, 41(5): 2649-2661. |
[6] | 董林, 陈青柏, 王建友, 李鹏飞, 王进. 电渗析苦咸水淡化技术研究进展[J]. 化工进展, 2022, 41(4): 2102-2114. |
[7] | 万磊, 徐子昂, 王培灿, 许琴, 王保国. 电解水制氢的耐碱离子膜研究进展[J]. 化工进展, 2022, 41(3): 1556-1568. |
[8] | 张群, 陈重军, 谢嘉玮, 邹馨怡. 高盐废水微生物脱盐池处理研究进展[J]. 化工进展, 2022, 41(2): 974-980. |
[9] | 王吉坤, 李阳, 陈贵锋, 刘敏, 寇丽红, 王琦, 何毅聪. 臭氧催化氧化降解煤化工高盐废水有机物的机理[J]. 化工进展, 2022, 41(1): 493-502. |
[10] | 赵宁, 冯永新, 林廷坤, 谢志文. 热烟气环境下脱硫废水液滴蒸发特性研究进展[J]. 化工进展, 2021, 40(8): 4508-4514. |
[11] | 苏慧超, 张田明, 吴云奇, 徐国荣. 电渗析-超滤耦合技术研究进展[J]. 化工进展, 2020, 39(S2): 1-7. |
[12] | 祝海涛,杨波,高从堦. 电渗析过程传质模型的研究进展[J]. 化工进展, 2020, 39(3): 815-823. |
[13] | 张世英,刘振,李龙飞. 负载离子液体的阳离子交换膜在烯烃/烷烃分离中的应用[J]. 化工进展, 2020, 39(3): 1090-1094. |
[14] | 刘威. 煤制烯烃含盐废水近零排放技术的应用[J]. 化工进展, 2020, 39(11): 4643-4650. |
[15] | 马双忱,陈嘉宁,万忠诚,向亚军,张净瑞,曲保忠. 高盐脱硫废水水泥化固定技术的研究现状与发展[J]. 化工进展, 2019, 38(9): 4275-4283. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 477
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |