1 |
上官方钦, 刘正东, 殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究[J]. 中国冶金, 2021, 31(9): 15-20.
|
|
SHANGGUAN Fangqin, LIU Zhengdong, YIN Ruiyu. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China [J]. China Metallurgy, 2021, 31(9): 15-20.
|
2 |
阮清华, 白苗苗. 我国长流程炼钢与短流程炼钢成本比较[J]. 中国钢铁业, 2019(10): 58-60.
|
|
RUAN Qinghua, BAI Miaomiao. Cost comparison between the long processing steelmaking and the short processing steelmaking[J]. China Steel Industry, 2019(10): 58-60.
|
3 |
王广, 张宏强, 苏步新, 等. 我国钢铁工业碳排放现状与降碳展望[J]. 化工矿物与加工, 2021, 8: 1-14.
|
|
WANG Guang, ZHANG Hongqiang, SU Buxin, et al. Current situation of carbon emission and carbon reduction prospect of Chinese iron and steel industry[J]. Industrial Minerals & Processing, 2021, 8: 1-14.
|
4 |
CHUFAROV G, TATIJEVSKAJA E. The reaction zones in the reduction of magnetite and hematite with hydrogen[J]. Acta Physicochimica URSS, 1935, 3(6): 957-974.
|
5 |
SPREITZER D, SCHENK J. Reduction of iron oxides with hydrogen—A review[J]. Steel Research International, 2019, 90(10):1900108.
|
6 |
欧阳藩, 金成用, 郭慕孙. 攀枝花铁精矿钢铁冶炼新流程-流态化还原法阶段总结[Z]. 中国科学院化工冶金研究所, 1980.
|
|
OUYANG Fan, JIN Chengyong, KWAUK Mooson. Summary of the new processing route of Panzhihua iron ore concentrate-fluidized bed reduction[Z]. Institute of Chemical Metallurgy, Chinese Academy of Sciences, 1980.
|
7 |
郭慕孙. 钒钛铁矿综合利用——流态化还原法[J]. 钢铁, 1979, 14(6): 1-12.
|
|
KWAUK Mooson. Comprehensive utilization of Panzhihua iron ore-Fluidized bed reduction method[J]. Iron and Steel, 1979, 14(6): 1-12.
|
8 |
欧阳藩, 郭慕孙. 钒钛铁矿综合利用-流态化还原法(二)[J]. 化工冶金, 1981, 2: 1-15.
|
|
OUYANG Fan, KWAUK Mooson. Comprehensive utilization of Panzhihua iron ore-Fluidized bed reduction method (Ⅱ)[J]. Chemical Metallurgy, 1981, 2: 1-15.
|
9 |
ELMQUIST S A, WEBER P, EICHBERGER H. Operational results of the Circored fine ore direct reduction plant in Trinidad[J]. Stahl und Eisen (in German), 2002, 122(2): 59-64.
|
10 |
SCHENK J L. Recent status of fluidized bed technologies for producing iron input materials for steelmaking[J]. Particuology, 2011, 9(1): 14-23.
|
11 |
ANAMERIC B, KAWATRA S K. Properties and features of direct reduced iron[J]. Mineral Processing and Extractive Metallurgy Review, 2007, 28: 59-116.
|
12 |
HASANBEIGI A, ARENS M, PRICE L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review[J]. Renewable and Sustainable Energy Reviews, 2014, 33:645-658.
|
13 |
2019 world direct reduction statistics[EB/OL]. .
|
14 |
LUCENA R, WHIPP R, ALBARRAN W. The Orinoco iron FINMET® plant operation. STAHL 2006 crossing frontiers, Dusseldorf, Germany, Nov. 9-10, 2006.
|
15 |
BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454.
|
16 |
王国军, 朱青德, 魏国立. 电炉钢与转炉钢成本比较[J]. 甘肃冶金, 2019, 41(5): 74-78.
|
|
WANG Guojun, ZHU Qingde, WEI Guoli. Cost comparison between EAF steel and converter steel[J]. Gansu Metallurgy, 2019, 41(5): 74-78.
|
17 |
LEMPERLE M, WEIGEL A. On the smelting reduction of iron ores with hydrogen-argon plasma[J]. Steel Research, 1985, 56(9): 456-469.
|
18 |
BEHERA P R, BHOI B, PARAMGURU R K, et al. Hydrogen plasma smelting reduction of Fe2O3 [J]. Metallurgical and Materials Transactions B, 2019, 50(1): 262-270.
|
19 |
NASERI SEFTEJANI M, SCHENK J. Thermodynamic of liquid iron ore reduction by hydrogen thermal plasma[J]. Metals, 2018, 8(12): 1051.
|
20 |
NASERI SEFTEJANI M, SCHENK J, ZARL M A. Reduction of haematite using hydrogen thermal plasma[J]. Materials, 2019, 12(10): 1608.
|
21 |
SEFTEJANI M N, SCHENK J. Kinetics of molten iron oxides reduction using hydrogen[J]. La Metallurgia Italiana, 2018, 7/8:5-14.
|
22 |
SADOWAY D R. The eelectrochemical processing of refractory metals[J]. JOM, 1991, 43(7): 15-19.
|
23 |
SADOWAY D R. New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts[J]. Journal of Materials Research, 1995, 10(3): 487-492.
|
24 |
WIENCKE J, LAVELAINE H, PANTEIX P J, et al. Electrolysis of iron in a molten oxide electrolyte[J]. Journal of Applied Electrochemistry, 2018, 48(1): 115-126.
|
25 |
ALLANORE A. Features and challenges of molten oxide electrolytes for metal extraction[J]. Journal of the Electrochemical Society, 2014, 162(1): E13-E22.
|
26 |
CAVALIERE P. Clean ironmaking and steelmaking processes: efficient technologies for greenhouse emissions abatement[M]. Berlin:Springer, 2019: 566-576.
|
27 |
PICARD G, OSTER D, TREMILLON B. Electrochemical reduction of iron oxides in suspension in water-sodium hydroxide mixtures between 25℃ and 140 ℃, Part Ⅱ. Experimental study[J]. Journal of Chemistry Research, 1980, 8: 252-253.
|
28 |
YUAN B Y, KONGSTEIN O E, HAARBERG G M. Electrowinning of iron in aqueous alkaline solution using a rotating cathode[J]. Journal of the Electrochemical Society, 2009, 156(2): D64.
|
29 |
MONTEIRO J F, IVANOVA Y A, KOVALEVSKY A V, et al. Reduction of magnetite to metallic iron in strong alkaline medium[J]. Electrochimica Acta, 2016, 193: 284-292.
|
30 |
OSBORN C S. Eelectrodeposition of iron: US884075[P]. 1908.
|
31 |
BOUCHER A. Process for the industrial manufacture of electrolytic iron: US1086132[P]. 1914.
|
32 |
MOSTAD E, ROLSETH S, THONSTAD J. Electrowinning of iron from sulphate solutions[J]. Hydrometallurgy, 2008, 90(2/3/4): 213-220.
|
33 |
BADENHORST W D, ROSSOUW C, CHO H, et al. Electrowinning of iron from spent leaching solutions using novel anion exchange membranes[J]. Membranes, 2019, 9(11): 137.
|