1 |
DOTTORI F, SZEWCZYK W, CISCAR J C, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8(9): 781-786.
|
2 |
LI Y, SHANG J H, ZHANG C, et al. The role of freshwater eutrophication in greenhouse gas emissions: a review[J]. Science of the Total Environment, 2021, 768: 144582.
|
3 |
MICHAELIDES E E. Thermodynamic analysis and power requirements of CO2 capture, transportation, and storage in the ocean[J]. Energy, 2021, 230: 120804.
|
4 |
BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176.
|
5 |
王明坛, 谢圣林, 许子通. 二氧化碳捕集技术的现状与最新进展[J]. 当代化工, 2016, 45(5): 1002-1005.
|
|
WANG Mingtan, XIE Shenglin, XU Zitong. Present state and latest development of CO2 capture technology[J]. Contemporary Chemical Industry, 2016, 45(5): 1002-1005.
|
6 |
张娜. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工设计通讯, 2021, 47(3): 11-12.
|
|
ZHANG Na. Low-temperature methanol washing technology and its application in coal chemical industry[J]. Chemical Engineering Design Communications, 2021, 47(3): 11-12.
|
7 |
SCHOLES C A, ANDERSON C J, STEVENS G W, et al. Membrane gas separation-physical solvent absorption combined plant simulations for pre-combustion capture[J]. Energy Procedia, 2013, 37: 1039-1049.
|
8 |
RANKE G, WEISS H. Process for separating and recovering gaseous components from a gas mixture by physical washing: EP 79105255.8[P]. 1980-07-09.
|
9 |
YANG S, QIAN Y, YANG S Y. Development of a full CO2 capture process based on the rectisol wash technology[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193.
|
10 |
SHARMA I, HOADLEY A F A, MAHAJANI S M, et al. Multi-objective optimisation of a Rectisol™ process for carbon capture[J]. Journal of Cleaner Production, 2016, 119: 196-206.
|
11 |
GATTI M, MARTELLI E, MARECHAL F, et al. Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture[J]. Applied Thermal Engineering, 2014, 70(2): 1123-1140.
|
12 |
LIU X, YANG S Y, HU Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57.
|
13 |
佘红梅, 尹广华, 贾春临. 变压吸附技术提纯回收甲醇洗放空气中二氧化碳[J]. 大氮肥, 2009, 32(2): 129-132.
|
|
SHE Hongmei, YIN Guanghua, JIA Chunlin. Using PSA technology to recover CO2 from rectisol vented gas[J]. Large Scale Nitrogenous Fertilizer Industry, 2009, 32(2): 129-132.
|
14 |
刘都现, 韩振生. 浅析低温甲醇洗尾气中二氧化碳的回收利用[J]. 山东工业技术, 2016(11): 43.
|
|
LIU Duxian, HAN Zhensheng. Discussion on recover and utilization of CO2 from rectisol tail gas[J]. Shandong Industrial Technology, 2016(11): 43.
|
15 |
解寅珑. 基于某厂低温甲醇洗工艺装置模拟与优化改进方案研究[D]. 西安: 西北大学, 2020.
|
|
XIE Yinlong. The study on process simulation and optimization improvement scheme of rectisol equipment of on A plant[D]. Xi’an: Northwest University, 2020.
|
16 |
MOORTGAT J. Reservoir simulation with the cubic plus (cross-) association equation of state for water, CO2, hydrocarbons, and tracers[J]. Advances in Water Resources, 2018, 114: 29-44.
|
17 |
WANG W G, WANG J F, LU Z J, et al. Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source[J]. Energy Conversion and Management, 2020, 211: 112765.
|
18 |
LIU J, ZHANG X S, LIN Z, et al. Exergy and energy analysis of a novel dual-chilling-source refrigerating system applied to temperature and humidity independent control[J]. Energy Conversion and Management, 2019, 197: 111875.
|
19 |
HINDERINK A P, KERKHOF F P J M, LIE A B K, et al. Exergy analysis with a flowsheeting simulator—I. Theory; calculating exergies of material streams[J]. Chemical Engineering Science, 1996, 51(20): 4693-4700.
|
20 |
张旭. 基于㶲分析的焦炉煤气甲烷化工艺优化[D]. 马鞍山: 安徽工业大学, 2019.
|
|
ZHANG Xu. Optimization of coke oven gas methanation process based on exergy analysis[D]. Ma’anshan: Anhui Universit of Technology, 2019.
|
21 |
傅秦生. 能量系统的热力学分析方法[M]. 西安: 西安交通大学出版社, 2005.
|
|
FU Qinsheng. Methods for thermodynamic analysis of energy systems[M]. Xi’an: Xi’an Jiaotong University Press, 2005.
|
22 |
YU M X, CUI P Z, WANG Y Let al. Advanced exergy and exergoeconomic analysis of cascade absorption refrigeration system driven by low-grade waste heat[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16843-16857.
|
23 |
全国能源基础与管理标准化技术委员会. 能量系统㶲分析技术导则: [S]. 北京: 中国标准出版社,2005.
|
|
Energy Fundamentals and Management. Technical guides for exergy analysis in energy system: [S]. Beijing: Standards Press of China, 2005.
|
24 |
刘振学, 王力. 实验设计与数据处理[M]. 2版.北京: 化学工业出版社, 2015.
|
|
LIU Zhenxue, WANG Li. Experimental design and data processing[M]. 2nd ed. Beijing: Chemical Industry Press, 2015.
|
25 |
DENG J Q, CAO Z, ZHANG D B, et al. Integration of energy recovery network including recycling residual pressure energy with pinch technology[J]. Chinese Journal of Chemical Engineering, 2017, 25(4): 453-462.
|