化工进展 ›› 2022, Vol. 41 ›› Issue (1): 400-417.DOI: 10.16085/j.issn.1000-6613.2021-0295
潘柔杏1(), 于庆君1,2, 唐晓龙1,2(), 易红宏1,2, 高凤雨1,2, 赵顺征1,2, 周远松1,2, 刘媛媛1
收稿日期:
2021-02-07
修回日期:
2020-05-18
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
唐晓龙
作者简介:
潘柔杏(1996—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
PAN Rouxing1(), YU Qingjun1,2, TANG Xiaolong1,2(), YI Honghong1,2, GAO Fengyu1,2, ZHAO Shunzheng1,2, ZHOU Yuansong1,2, LIU Yuanyuan1
Received:
2021-02-07
Revised:
2020-05-18
Online:
2022-01-05
Published:
2022-01-24
Contact:
TANG Xiaolong
摘要:
机动车尾气是氮氧化物(NOx)重要来源之一,常见柴油车尾气NOx处理技术对冷启动阶段NOx减排效果较差,被动NOx吸附剂(PNA)应运而生。PNA可低温吸附存储NOx、高温脱附释放NOx,释放的NOx经过下游NOx处理单元[选择性催化还原(SCR)或NOx储存还原(NSR)]被彻底净化。本文综述了近年来PNA材料在低温冷启动过程中净化NOx的研究进展,对不同类型PNA材料进行结构及性能比对,其中Pd/分子筛表现出良好的低温NOx吸附-脱附性能、抗硫性以及水热稳定性,成为PNA优选。深入讨论了Pd/分子筛存储NOx机制以及影响因素。此外,分析了PNA在低温吸附-脱附NOx中面临的问题并展望其前景,指出提高具有优异抗水性能的NOx吸附位点数量及Pd物种分散程度是开发高性能PNA的重要前提。
中图分类号:
潘柔杏, 于庆君, 唐晓龙, 易红宏, 高凤雨, 赵顺征, 周远松, 刘媛媛. 被动NOx吸附剂在柴油车冷启动排放控制中的研究进展[J]. 化工进展, 2022, 41(1): 400-417.
PAN Rouxing, YU Qingjun, TANG Xiaolong, YI Honghong, GAO Fengyu, ZHAO Shunzheng, ZHOU Yuansong, LIU Yuanyuan. Research progress of passive NOx adsorbent in diesel vehicle for cold start emission control[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 400-417.
载体 | 金属 | 负载量(质量分数)/% | 存储温度/℃ | 存储性能(NSE值或NOx/Pd) | 释放性能(NDE值或温度范围) | 参考文献 |
---|---|---|---|---|---|---|
CeO2 | Pt | 1~2 | 80~120 | NSE约40% | <350℃,NDE约20% 350~500℃ | [ |
Pd | 1~2 | 80~120 | NSE 25%~50% | <350℃,NDE约40% 180~500℃ | [ | |
Pd-Pt | 1-1 | 80 | — | 280~500℃ | [ | |
Al2O3 | Pt | 0.43g/L 2 | 80~200 | NSE约37% | 380~500℃ | [ |
Pd | 0.43g/L 2 | 80~200 | NSE约14% | 150~350℃ | [ | |
Pt-La | 1-1 | 80~160 | NSE 60%~90% | 250~500℃,NDE约60% | [ | |
Pd-Pt | 1-1 | 80 | — | 150~500℃ | [ | |
Ag | 1.3 | 120 | NSE约50% | 250~470℃ | [ | |
ZrO2 | Pd | 1 | 120 | NSE约33% | <350℃,NDE约70% | [ |
— | — | — | NSE约10.5% | <350℃,释放量与吸附量相当 | [ | |
CeO2-Pr2O3 | Pt | 1 | 120 | NSE约68% | <350℃,NDE约40% | [ |
Pd | 1 | 120 | NSE约50% | <350℃,NDE约41% | [ | |
CeO2-ZrO2 | Pt | 1 | 120 | NSE约70% | <350℃,NDE约60% | [ |
Pd | 1~2 | 80~120 | NSE约20% | <350℃,NDE约80% 250~500℃ | [ | |
Pt-Pd | 0.5-0.5 | 120 | NSE约50% | <350℃,NDE约70% | [ | |
CeO2-Al2O3 | Pt | 2.3 | 80 | NSE约10% | 300~400℃ | [ |
Pd | 2.3 | 80 | NSE约5% | 100~200℃ | [ | |
WO3-ZrO2 | Pd | 1 | 120 | NSE约80% | <350℃,NDE约100% | [ |
— | — | — | NSE约0 | <350℃,释放量与吸附量相当 | [ | |
SSZ-13 | Pd | 1~2 | 80~120 | NSE约90% NOx/Pd 0.41 | 250~450℃ | [ |
Co | — | 100 | NSE约96% | 250~400℃ | [ | |
Beta | Pd | 1 | 100 | NSE约90% | 200~450℃ | [ |
CaO | 10 | 40 | NOx穿透时间102min | 500~550℃ | [ | |
ZSM-5 | Pd | 0~2 | 50~150 | NSE约90% NOx/Pd 0.3~0.83 | 200~450℃ | [ |
LTA | Pd | 1.4 | 80 | NOx/Pd 0.52 | 300~400℃ | [ |
SSZ-39 | Pd | 0.7 | 100 | NSE约90% | 230~350℃ | [ |
FER | Pd | 1.8 | 100 | NOx/Pd 0.9 | 200~300℃ | [ |
MCM-22 | Pd | 1.22 | 100 | NOx/Pd 0.55 | 180~300℃ | [ |
表1 不同载体PNA材料NOx吸附-脱附性能
载体 | 金属 | 负载量(质量分数)/% | 存储温度/℃ | 存储性能(NSE值或NOx/Pd) | 释放性能(NDE值或温度范围) | 参考文献 |
---|---|---|---|---|---|---|
CeO2 | Pt | 1~2 | 80~120 | NSE约40% | <350℃,NDE约20% 350~500℃ | [ |
Pd | 1~2 | 80~120 | NSE 25%~50% | <350℃,NDE约40% 180~500℃ | [ | |
Pd-Pt | 1-1 | 80 | — | 280~500℃ | [ | |
Al2O3 | Pt | 0.43g/L 2 | 80~200 | NSE约37% | 380~500℃ | [ |
Pd | 0.43g/L 2 | 80~200 | NSE约14% | 150~350℃ | [ | |
Pt-La | 1-1 | 80~160 | NSE 60%~90% | 250~500℃,NDE约60% | [ | |
Pd-Pt | 1-1 | 80 | — | 150~500℃ | [ | |
Ag | 1.3 | 120 | NSE约50% | 250~470℃ | [ | |
ZrO2 | Pd | 1 | 120 | NSE约33% | <350℃,NDE约70% | [ |
— | — | — | NSE约10.5% | <350℃,释放量与吸附量相当 | [ | |
CeO2-Pr2O3 | Pt | 1 | 120 | NSE约68% | <350℃,NDE约40% | [ |
Pd | 1 | 120 | NSE约50% | <350℃,NDE约41% | [ | |
CeO2-ZrO2 | Pt | 1 | 120 | NSE约70% | <350℃,NDE约60% | [ |
Pd | 1~2 | 80~120 | NSE约20% | <350℃,NDE约80% 250~500℃ | [ | |
Pt-Pd | 0.5-0.5 | 120 | NSE约50% | <350℃,NDE约70% | [ | |
CeO2-Al2O3 | Pt | 2.3 | 80 | NSE约10% | 300~400℃ | [ |
Pd | 2.3 | 80 | NSE约5% | 100~200℃ | [ | |
WO3-ZrO2 | Pd | 1 | 120 | NSE约80% | <350℃,NDE约100% | [ |
— | — | — | NSE约0 | <350℃,释放量与吸附量相当 | [ | |
SSZ-13 | Pd | 1~2 | 80~120 | NSE约90% NOx/Pd 0.41 | 250~450℃ | [ |
Co | — | 100 | NSE约96% | 250~400℃ | [ | |
Beta | Pd | 1 | 100 | NSE约90% | 200~450℃ | [ |
CaO | 10 | 40 | NOx穿透时间102min | 500~550℃ | [ | |
ZSM-5 | Pd | 0~2 | 50~150 | NSE约90% NOx/Pd 0.3~0.83 | 200~450℃ | [ |
LTA | Pd | 1.4 | 80 | NOx/Pd 0.52 | 300~400℃ | [ |
SSZ-39 | Pd | 0.7 | 100 | NSE约90% | 230~350℃ | [ |
FER | Pd | 1.8 | 100 | NOx/Pd 0.9 | 200~300℃ | [ |
MCM-22 | Pd | 1.22 | 100 | NOx/Pd 0.55 | 180~300℃ | [ |
1 | LEE Jungkuk, THEIS Joseph R, KYRIAKIDOU Eleni A. Vehicle emissions trapping materials: successes, challenges, and the path forward[J]. Applied Catalysis B: Environmental, 2019, 243: 397-414. |
2 | AYODHYA Archit Srinivasacharya, NARAYANAPPA Kumar Gottekere. An overview of after-treatment systems for diesel engines[J]. Environmental Science and Pollution Research, 2018, 25(35): 35034-35047. |
3 | REŞITOĞLU İ A, ALTINIŞIK K, KESKIN A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems[J]. Clean Technologies and Environmental Policy, 2015, 17(1): 15-27. |
4 | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
5 | JANGJOU Yasser, Quan DO, GU Yuntao, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8: 1325-1337. |
6 | WANG Di, JANGJOU Yasser, LIU Yong, et al. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
7 | FICKEL Dustin W, Elizabeth D’ADDIO, LAUTERBACH Jochen A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Applied Catalysis B: Environmental, 2011, 102(3/4): 441-448. |
8 | CHEN Haiying, COLLIER Jillian E, LIU Dongxia, et al. Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control[J]. Catalysis Letters, 2016, 146(9): 1706-1711. |
9 | MISRA Chandan, RUEHL Chris, COLLINS John, et al. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC, respectively[J]. Environmental Science & Technology, 2017, 51(12): 6981-6989. |
10 | WANG Yujie, YONG Xin, RONG Mingyue, et al. Recent advances in catalytic automotive emission control: passive NO storage at low temperatures[J]. Journal of the Chinese Chemical Society, 2020, 67(9): 1530-1543. |
11 | 汪晓伟, 李腾腾, 景晓军, 等. 轻型车实际行驶污染物排放特性试验研究[J]. 小型内燃机与车辆技术, 2018, 47(6): 46-50. |
WANG Xiaowei, LI Tengteng, JING Xiaojun, et al. Experimental study on real driving emissions characteristics of light duty vehicles[J]. Small Internal Combustion Engine and Vehicle Technique, 2018, 47(6): 46-50. | |
12 | WESTERMANN A, AZAMBRE B. Impact of the zeolite structure and acidity on the adsorption of unburnt hydrocarbons relevant to cold start conditions[J]. The Journal of Physical Chemistry C, 2016, 120(45): 25903-25914. |
13 | FREY H C. Trends in onroad transportation energy and emissions[J]. Journal of the Air & Waste Management Association, 2018, 68(6): 514-563. |
14 | COLE J. System for reducing NOx from mobile source engine exhaust: US5656244A[P]. 1997-08-12. |
15 | JARVIS Mottlene, ADAMS Karen Marie. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent: US6182443 B1[P]. 2001-02-06. |
16 | HENRY Cary, GUPTA Aniket, CURRIER Neal, et al. Advanced technology light duty diesel aftertreatment system[J]. City, 2012, 15(570): 21-28. |
17 | CHEN Haiying, MULLA Shadab, WEIGERT Erich, et al. Cold start concept (CSC™): a novel catalyst for cold start emission control[J]. SAE International Journal of Fuels and Lubricants, 2013, 6(2): 372-381. |
18 | MELVILLE Joanne Elizabeth, BRISLEY Robert James, KEANE Orla, et al. Thermally regenerable nitric oxide adsorbent: US8105559[P]. 2012-01-31. |
19 | CHEN Haiying, LIU Donna, WEIGERT Erich, et al. Durability assessment of diesel cold start concept (dCSC™) technologies[J]. SAE International Journal of Engines, 2017, 10(4): 1713-1721. |
20 | GU Yuntao, EPLING William S. Passive NOx adsorber: an overview of catalyst performance and reaction chemistry[J]. Applied Catalysis A: General, 2019, 570(25): 1-14. |
21 | MOLINER M, CORMA A. From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOx adsorbers for low-temperature control of emissions from diesel engines[J]. Reaction Chemistry & Engineering, 2019, 4(2): 223-234. |
22 | FILTSCHEW Anastasia, HESS Christian. Unravelling the mechanism of NO and NO2 storage in ceria: the role of defects and Ce-O surface sites[J]. Applied Catalysis B: Environmental, 2018, 237: 1066-1081. |
23 | LEE Kyung Ju, KUMAR Pullur Anil, MAQBOOL Muhammad Salman, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: physico-chemical properties and catalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142/143: 705-717. |
24 | Zafer SAY, VOVK Evgeny I, BUKHTIYAROV Valerii I, et al. Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 89-100. |
25 | JONES Samantha, JI Yaying, CROCKER Mark. Ceria-based catalysts for low temperature NOx storage and release[J]. Catalysis Letters, 2016, 146(5): 909-917. |
26 | RYOU Youngseok, LEE Jaeha, LEE Hyokyoung, et al. Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application[J]. Catalysis Today, 2018, 307(1): 93-101. |
27 | RYOU Youngseok, LEE Jaeha, LEE Hyokyoung, et al. Effect of sulfur aging and regeneration on low temperature NO adsorption over hydrothermally treated Pd/CeO2 and Pd/Ce0.58Zr0.42O2 catalysts[J]. Catalysis Today, 2017, 297(15): 53-59. |
28 | KIM Yongwoo, HWANG Sungha, LEE Jaeha, et al. Comparison of NOx adsorption/desorption behaviors over Pd/CeO2 and Pd/SSZ-13 as passive NOx adsorbers for cold start application[J]. Emission Control Science and Technology, 2019, 5(2): 172-182. |
29 | JING Yuan, CAI Zhengxu, LIU Chong, et al. Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3)[J]. ACS Catalysis, 2020, 10(2): 1010-1023. |
30 | MOZAFFARI Nastaran, SOLAYMANI Shahram, ACHOUR Amine, et al. New Insights into SnO2/Al2O3, Ni/Al2O3, and SnO2/Ni/Al2O3 composite films for CO adsorption: building a bridge between microstructures and adsorption properties[J]. The Journal of Physical Chemistry C, 2020, 124(6): 3692-3701. |
31 | JI Yaying, BAI Shuli, CROCKER Mark. Al2O3-based passive NOx adsorbers for low temperature applications[J]. Applied Catalysis B: Environmental, 2015, 170/171: 283-292. |
32 | LUO Jinyong, GAO Feng, KARIM Ayman M, et al. Advantages of MgAlOx over γ-Al2O3 as a support material for potassium-based high-temperature lean NOx traps[J]. ACS Catalysis, 2015, 5(8): 4680-4689. |
33 | THEIS Joseph R, LAMBERT Christine K. An assessment of low temperature NOx adsorbers for cold-start NOx control on diesel engines[J]. Catalysis Today, 2015, 258: 367-377. |
34 | REN Shouxian, SCHMIEG Steven J, KOCH Calvin K, et al. Investigation of Ag-based low temperature NO adsorbers[J]. Catalysis Today, 2015, 258: 378-385. |
35 | JONES Samantha, JI Yaying, Agustín BUENO-LOPEZ, et al. CeO2-M2O3 passive NOx adsorbers for cold start applications[J]. Emission Control Science and Technology, 2017, 3(1): 59-72. |
36 | BOUTIKOS Panagiotis, Adrián ŽÁK, Petr KOĆÍ. CO and hydrocarbon light-off inhibition by pre-adsorbed NOx on Pt/CeO2/Al2O3 and Pd/CeO2/Al2O3 diesel oxidation catalysts[J]. Chemical Engineering Science, 2019, 209: 115201. |
37 | THEIS Joseph R. An assessment of Pt and Pd model catalysts for low temperature NO adsorption[J]. Catalysis Today, 2016, 267: 93-109. |
38 | THEIS Joseph R, LAMBERT Christine K. Mechanistic assessment of low temperature NOx adsorbers for cold start NOx control on diesel engines[J]. Catalysis Today, 2019, 320: 181-195. |
39 | JI Yaying, XU Dongyan, BAI Shuli, et al. Pt- and Pd-promoted CeO2-ZrO2 for passive NOx adsorber applications[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 111-125. |
40 | KVASNICKOVA Anežka, KOCI Petr, JI Yaying, et al. Effective model of NOx adsorption and desorption on PtPd/CeO2-ZrO2 passive NOx adsorber[J]. Catalysis Letters, 2020, 150(11): 3223-3233. |
41 | LI Hang, SHEN Meiqing, WANG Jianqiang, et al. Effect of support on CO oxidation performance over the Pd/CeO2 and Pd/CeO2-ZrO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1477-1486. |
42 | THEIS Joseph R, LAMBERT Christine. The effects of CO, C2H4, and H2O on the NOx storage performance of low temperature NOx adsorbers for diesel applications[J]. SAE International Journal of Engines, 2017, 10(4): 1627-1637. |
43 | JI Yaying, BAI Shuli, XU Dongyan, et al. Pd-promoted WO3-ZrO2 for low temperature NOx storage[J]. Applied Catalysis B: Environmental, 2020, 264(5): 118499. |
44 | PORTA Alessandro, PELLEGRINELLI Tommaso, CASTOLDI Lidia, et al. Low temperature NOx adsorption study on Pd-promoted zeolites[J]. Topics in Catalysis, 2018, 61(18/19): 2021-2034. |
45 | MODEN Bjorn, DONOHUE James M, CORMIER William E, et al. The uses and challenges of zeolites in automotive applications[J]. Topics in Catalysis, 2010, 53(19/20): 1367-1373. |
46 | COLLIER Jillian Elaine, YANG Sanyuan. Passive NOx adsorber: US2017/0001169 A1[P]. 2017-01-05. |
47 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. The superior hydrothermal stability of Pd/SSZ-39 in low temperature passive NOx adsorption (PNA) and methane combustion[J]. Applied Catalysis B: Environmental, 2021, 280: 119449. |
48 | WANG Aiyong, LINDGREN Kristina, DI Mengqiao, et al. Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts[J]. Applied Catalysis B: Environmental, 2020, 278: 119315. |
49 | CHANG Xiaofei, LU Guanzhong, GUO Yun, et al. A high effective adsorbent of NOx: preparation, characterization and performance of Ca-beta zeolites[J]. Microporous and Mesoporous Materials, 2013, 165: 113-120. |
50 | JIANG Qiuren, WANG Chen, SHEN Meiqing, et al. The first non-precious metal passive NOx adsorber for cold-start applications[J]. Catalysis Communications, 2019, 125: 103-107. |
51 | RYOU Youngseok, LEE Jaeha, CHO Sung June, et al. Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application[J]. Applied Catalysis B: Environmental, 2017, 212: 140-149. |
52 | LEE Jaeha, RYOU Youngseok, HWANG Sungha, et al. Comparative study of the mobility of Pd species in SSZ-13 and ZSM-5, and its implication for their activity as passive NOx adsorbers (PNAs) after hydro-thermal aging[J]. Catalysis Science & Technology, 2019, 9(1): 163-173. |
53 | ZHENG Yang, KOVARIK Libor, ENGELHARD Mark H, et al. Low-temperature Pd/Zeolite passive NOx adsorbers: structure, performance, and adsorption chemistry[J]. The Journal of Physical Chemistry C, 2017, 121(29): 15793-15803. |
54 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. Palladium/Beta zeolite passive NOx adsorbers (PNA): clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance[J]. Applied Catalysis A: General, 2019, 569: 141-148. |
55 | BELLO Estefanía, MARGARIT Vicente J, GALLEGO Eva M, et al. Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications[J]. Microporous and Mesoporous Materials, 2020, 302(1): 110222. |
56 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers[J]. Angewandte Chemie International Edition, 2018, 57(51): 16672-16677. |
57 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. Palladium/zeolite low temperature passive NOx adsorbers (PNA): structure-adsorption property relationships for hydrothermally aged PNA materials[J]. Emission Control Science and Technology, 2020, 6(2): 126-138. |
58 | SHAN Yulong, SUN Yu, LI Yaobin, et al. Passive NO adsorption on hydrothermally aged Pd-based small-pore zeolites[J]. Topics in Catalysis, 2020, 63(9/10): 944-953. |
59 | KHIVANTSEV Konstantin, WEI Xinyi, KOVARIK Libor, et al. Pd/FER vs. Pd/SSZ-13 passive NOx adsorbers: adsorbate-controlled location of atomically dispersed Pd(Ⅱ) in FER determines high activity and stability[J]. Angewandte Chemie International Edition, DOI: 10.1002/anie.202107554. |
60 | AMBAST Mugdha, KARINSHAK Kyle, RAHMAN Bhuiyan Md Mushfikur, et al. Passive NOx adsorption on Pd/H-ZSM-5: experiments and modeling[J]. Applied Catalysis B: Environmental, 2020, 269: 118802. |
61 | ZHANG Beibei, SHEN Meiqing, WANG Jianqiang, et al. Investigation of various Pd species in Pd/BEA for cold start application[J]. Catalysts, 2019, 9(3): 247. |
62 | YU Qingjun, CHEN Xiaoyin, BHAT Adarsh, et al. Activation of passive NOx adsorbers by pretreatment with reaction gas mixture[J]. Chemical Engineering Journal, 2020, 399: 125727. |
63 | 杜延年, 周祥, 周涵, 等. FAU分子筛骨架中Al原子的分布规律及对Brønsted酸强度的影响[J]. 石油学报(石油加工), 2019, 35(1): 11-19. |
DU Yannian, ZHOU Xiang, ZHOU Han, et al. Distribution of aluminum atoms in FAU structured framework and their influence on Brønsted acid strength[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 11-19. | |
64 | ADELMAN B J, SACHTLER W M H. The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 1997, 14(1/2): 1-11. |
65 | MIHAI Oana, Lidija TRANDAFILOVIĆ, WENTWORTH Travis, et al. The effect of Si/Al ratio for Pd/BEA and Pd/SSZ-13 used as passive NOx adsorbers[J]. Topics in Catalysis, 2018, 61(18/19): 2007-2020. |
66 | RYOU Youngseok, LEE Jaeha, LEE Hyokyoung, et al. Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber[J]. Catalysis Today, 2019, 320: 175-180. |
67 | 王宁. 高分散金属分子筛的制备及其加氢催化性能研究[D]. 北京: 北京化工大学, 2018. |
WANG Ning. Preparation and catalytic performance of highly dispersed metal molecular sieves[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
68 | IWASAKI Masaoki, SHINJOH Hirofumi. Hydrothermal stability enhancement by sequential ion-exchange of rare earth metals on Fe/BEA zeolites used as NO reduction catalysts[J]. Chemical Communications, 2011, 47(13): 3966-3968. |
69 | LEE Jaeha, KIM Yongwoo, HWANG Sungha, et al. Deactivation of Pd/Zeolites passive NOx adsorber induced by NO and H2O: comparative study of Pd/ZSM-5 and Pd/SSZ-13[J]. Catalysis Today, 2021, 360: 350-355. |
70 | GU Yuntao, ZELINSKY Ryan P, CHEN Yuren, et al. Investigation of an irreversible NOx storage degradation mode on a Pd/BEA passive NOx adsorber[J]. Applied Catalysis B: Environmental, 2019, 258(5): 118032. |
71 | RYOU Youngseok, LEE Jaeha, KIM Yongwoo, et al. Effect of reduction treatments (H2vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application[J]. Applied Catalysis A: General, 2019, 569: 28-34. |
72 | ILMASANI Rojin Feizie, Jungwon WOO, CREASER Derek, et al. Influencing the NOx stability by metal oxide addition to Pd/BEA for passive NOx adsorbers[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 9830-9840. |
73 | LEE Jaeha, RYOU Youngseok, CHO Sung June, et al. Investigation of the active sites and optimum Pd/Al of Pd/ZSM-5 passive NO adsorbers for the cold-start application: evidence of isolated-Pd species obtained after a high-temperature thermal treatment[J]. Applied Catalysis B: Environmental, 2018, 226: 71-82. |
74 | LEE Jaeha, KIM Jonghyun, KIM Yongwoo, et al. Improving NOx storage and CO oxidation abilities of Pd/SSZ-13 by increasing its hydrophobicity[J]. Applied Catalysis B: Environmental, 2020, 277: 119190. |
75 | Anh VU, LUO Jinyong, LI Junhui, et al. Effects of CO on Pd/BEA passive NOx adsorbers[J]. Catalysis Letters, 2017, 147(3): 745-750. |
76 | KHIVANTSEV Konstantin, GAO Feng, KOVARIK Libor, et al. Molecular level understanding of how oxygen and carbon monoxide improve NOx storage in Palladium/SSZ-13 passive NOx adsorbers: the role of NO+ and Pd(Ⅱ)(CO)(NO) species[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10820-10827. |
77 | GUPTA Abhay, KANG Sung Bong, HAROLD Michael P. NOx uptake and release on Pd/SSZ-13: impact of feed composition and temperature[J]. Catalysis Today, 2021, 360(15): 411-425. |
78 | MEI Donghai, GAO Feng, SZANYI Janos, et al. Mechanistic insight into the passive NOx adsorption in the highly dispersed Pd/HBEA zeolite[J]. Applied Catalysis A: General, 2019, 569: 181-189. |
79 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOLEVA Iskra Z, et al. Stabilization of super electrophilic Pd2+ cations in small-pore SSZ-13 zeolite[J]. The Journal of Physical Chemistry C, 2020, 124(1): 309-321. |
80 | CASTOLDI Lidia, MATARRESE Roberto, MORANDI Sara, et al. Low-temperature Pd/FER NOx adsorbers: operando FT-IR spectroscopy and performance analysis[J]. Catalysis Today, 2021, 360(15): 317-325. |
81 | XU Lifeng, LUPESCU Jason, Justin URA, et al. Benefits of Pd doped zeolites for cold start HC/NOx emission reductions for gasoline and E85 fueled vehicles[J]. SAE International Journal of Fuels and Lubricants, 2018, 11(4): 301-317. |
82 | KYRIAKIDOU Eleni A, LEE Jungkuk, CHOI Jae Soon, et al. A comparative study of silver- and palladium-exchanged zeolites in propylene and nitrogen oxide adsorption and desorption for cold-start applications[J]. Catalysis Today, 2021, 360: 220-233. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[9] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[12] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[13] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[14] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[15] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |