化工进展 ›› 2022, Vol. 41 ›› Issue (1): 201-209.DOI: 10.16085/j.issn.1000-6613.2021-0310
收稿日期:
2021-02-09
修回日期:
2021-03-08
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
姚楠
作者简介:
林俊明(1995—),男,硕士研究生,研究方向为工业催化。E-mail:基金资助:
LIN Junming(), CEN Jie, LI Zhengjia, YANG Linyan, YAO Nan()
Received:
2021-02-09
Revised:
2021-03-08
Online:
2022-01-05
Published:
2022-01-24
Contact:
YAO Nan
摘要:
H2是一种清洁、绿色的燃料和能源载体。目前工业上应用较为成熟的生产工艺是重整反应制氢。其中,Ni基重整催化剂由于其高储量、高活性和低成本的优点而受到研究人员的广泛关注,但在反应过程中存在易因烧结、积炭和中毒等原因而失活的问题。因此,如何提高Ni基重整催化剂的反应稳定性是一个急需解决的问题。本文介绍了上述三种引起Ni基重整催化剂失活的主要原因,并从调控金属Ni粒子粒径、增强金属-载体相互作用、形成晶格氧或表面氧物种以及Ni粒子纳米结构调控四个方面阐述了近年来在抑制失活并提高Ni基重整催化剂反应性能和稳定性领域所取得的研究进展,并且提出优化反应条件、调变化学组成和调控Ni粒子纳米结构将是提高Ni基催化剂在重整反应过程中的稳定性的有效方法。
中图分类号:
林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209.
LIN Junming, CEN Jie, LI Zhengjia, YANG Linyan, YAO Nan. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209.
烧结原因 | 催化剂 | 反应 | 文献 |
---|---|---|---|
Ni-载体相互作用较弱 | Ni/SiO2,Ni/TiO2,Ni/ZrO2 | 甲烷干重整 | [ |
过高助剂含量 | 10Ni/xCe(x=10,15) | 甲烷干重整 | [ |
较高蒸汽含量 | Ni/Al2O3 | 蒸汽重整 | [ |
NiAl2O4尖晶石 | 氧化蒸汽重整 | [ | |
Ni-CZO | 甲烷蒸汽重整 | [ | |
反应物甲苯浓度增加 | FCR-4,RUA | 甲苯蒸汽重整 | [ |
表1 重整反应中引起催化剂烧结的主要原因
烧结原因 | 催化剂 | 反应 | 文献 |
---|---|---|---|
Ni-载体相互作用较弱 | Ni/SiO2,Ni/TiO2,Ni/ZrO2 | 甲烷干重整 | [ |
过高助剂含量 | 10Ni/xCe(x=10,15) | 甲烷干重整 | [ |
较高蒸汽含量 | Ni/Al2O3 | 蒸汽重整 | [ |
NiAl2O4尖晶石 | 氧化蒸汽重整 | [ | |
Ni-CZO | 甲烷蒸汽重整 | [ | |
反应物甲苯浓度增加 | FCR-4,RUA | 甲苯蒸汽重整 | [ |
积炭类型 | 反应类型 | 催化剂 | 对反应的影响 | 文献 |
---|---|---|---|---|
包覆炭 | 甲烷干重整 | Ni-CaO-ZrO2 | 包覆炭会覆盖活性中心引起催化剂失活 | [ |
甲烷干重整 | Ni/SBA-15 | |||
生物油氧化蒸汽重整 | Ni/CeO2,NiAl2O4尖晶石等 | |||
丝状炭 | 乙醇蒸汽重整 | Ni/La2O3-α-Al2O3 | 丝状炭不会阻塞活性位,对失活影响较小,但随着反应时间延长会堵塞反应管 | [ |
甲烷干重整 | Ni/Al2O3,Ni/CeO2 | |||
无定形炭 | CO2重整生物油 | Ni/Al2O3 | 无定形炭高度分散在催化剂表面或催化剂微孔中导致催化剂快速失活 | [ |
甲烷干重整 | Ni-CaO-ZrO2 | 无定形炭既可以参与反应,也可以作为其他类型炭物种的前体 | [ | |
聚合物炭 | 甲烷蒸汽重整 | Ni/ZrO2 | 聚合物炭会包裹催化剂降低其反应活性 | [ |
碳纳米管 | 甲烷干重整 | Ni/ZrO2 | 碳纳米管对催化剂失活影响较小 | [ |
甲苯蒸汽重整 | Ni/Al2O3 | 顶端生长碳纳米管对失活影响较小;底部生长碳纳米管会覆盖活性位,降低催化活性 | [ |
表2 重整反应中积炭类型对反应性能的影响
积炭类型 | 反应类型 | 催化剂 | 对反应的影响 | 文献 |
---|---|---|---|---|
包覆炭 | 甲烷干重整 | Ni-CaO-ZrO2 | 包覆炭会覆盖活性中心引起催化剂失活 | [ |
甲烷干重整 | Ni/SBA-15 | |||
生物油氧化蒸汽重整 | Ni/CeO2,NiAl2O4尖晶石等 | |||
丝状炭 | 乙醇蒸汽重整 | Ni/La2O3-α-Al2O3 | 丝状炭不会阻塞活性位,对失活影响较小,但随着反应时间延长会堵塞反应管 | [ |
甲烷干重整 | Ni/Al2O3,Ni/CeO2 | |||
无定形炭 | CO2重整生物油 | Ni/Al2O3 | 无定形炭高度分散在催化剂表面或催化剂微孔中导致催化剂快速失活 | [ |
甲烷干重整 | Ni-CaO-ZrO2 | 无定形炭既可以参与反应,也可以作为其他类型炭物种的前体 | [ | |
聚合物炭 | 甲烷蒸汽重整 | Ni/ZrO2 | 聚合物炭会包裹催化剂降低其反应活性 | [ |
碳纳米管 | 甲烷干重整 | Ni/ZrO2 | 碳纳米管对催化剂失活影响较小 | [ |
甲苯蒸汽重整 | Ni/Al2O3 | 顶端生长碳纳米管对失活影响较小;底部生长碳纳米管会覆盖活性位,降低催化活性 | [ |
1 | ZHAO Xianhui, JOSEPH Babu, KUHN John, et al. Biogas reforming to syngas: a review[J]. iScience, 2020, 23(5): 101082. |
2 | GAO Yuchen, JIANG Jianguo, MENG Yuan, et al. A review of recent developments in hydrogen production via biogas dry reforming[J]. Energy Conversion and Management, 2018, 171: 133-155. |
3 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
4 | AKHLAGHI Neda, Ghasem NAJAFPOUR-DARZI. A comprehensive review on biological hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22492-22512. |
5 | SAZALI Norazlianie. Emerging technologies by hydrogen: a review[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771. |
6 | 王东军, 姜伟, 赵仲阳, 等. 国内外工业化制氢技术的研究进展[J]. 工业催化, 2018, 26(5): 26-30. |
WANG Dongjun, JIANG Wei, ZHAO Zhongyang, et al. Research of industrial hydrogen production at home and abroad[J]. Industrial Catalysis, 2018, 26(5): 26-30. | |
7 | DAWOOD Furat, ANDA Martin, SHAFIULLAH G M. Hydrogen production for energy: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
8 | CARAPELLUCCI Roberto, GIORDANO Lorena. Steam, dry and autothermal methane reforming for hydrogen production: a thermodynamic equilibrium analysis[J]. Journal of Power Sources, 2020, 469: 228391. |
9 | ARAMOUNI Nicolas Abdel Karim, TOUMA Jad G, TARBOUSH Belal Abu, et al. Catalyst design for dry reforming of methane: analysis review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2570-2585. |
10 | CHEN Jixiang, SUN Junming, WANG Yong. Catalysts for steam reforming of bio-oil: a review[J]. Industrial & Engineering Chemistry Research, 2017, 56(16): 4627-4637. |
11 | OCHOA Aitor, BILBAO Javier, GAYUBO Ana G, et al. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109600. |
12 | ARGYLE Morris D, BARTHOLOMEW Calvin H. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
13 | 杨泽, 李挺, 王美君, 等. Ni基生物质焦油重整催化剂的研究进展[J]. 化工进展, 2016, 35(10): 3155-3163. |
YANG Ze, LI Ting, WANG Meijun, et al. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3155-3163. | |
14 | RANADE V V, JOSHI S S. Preface[M]//Industrial Catalytic Processes for Fine and Specialty Chemicals. Amsterdam: Elsevier, 2016: xxiii-xxv. |
15 | HANSEN Thomas W, DELARIVA Andrew T, CHALLA Sivakumar R, et al. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?[J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730. |
16 | DE LA CRUZ-FLORES Victor G, Angel MARTINEZ-HERNANDEZ, GRACIA-PINILLA Miguel A. Deactivation of Ni-SiO2 catalysts that are synthetized via a modified direct synthesis method during the dry reforming of methane[J]. Applied Catalysis A: General, 2020, 594: 117455. |
17 | ZHANG Rongjun, XIA Guofu, LI Mingfeng, et al. Effect of support on the performance of Ni-based catalyst in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1359-1365. |
18 | CHEIN Reiyu, FUNG Wenyou. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14303-14315. |
19 | SEHESTED Jens, GELTEN Johannes A P, HELVEG Stig. Sintering of nickel catalysts: effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants[J]. Applied Catalysis A: General, 2006, 309(2): 237-246. |
20 | ARANDIA Aitor, REMIRO Aingeru, VALLE Beatriz, et al. Deactivation of Ni spinel derived catalyst during the oxidative steam reforming of raw bio-oil[J]. Fuel, 2020, 276: 117995. |
21 | Hari PRASAD D, PARK S Y, JI H, et al. Effect of steam content on nickel nano-particle sintering and methane reforming activity of Ni-CZO anode cermets for internal reforming SOFCs[J]. Applied Catalysis A: General, 2012, 411/412: 160-169. |
22 | PARK Seo Yun, Gunung OH, KIM Kwangyul, et al. Deactivation characteristics of Ni and Ru catalysts in tar steam reforming[J]. Renewable Energy, 2017, 105: 76-83. |
23 | BINTE MOHAMED Dara Khairunnisa, VEKSHA Andrei, Teik Thye LIM, et al. Hydrogen bromide in syngas: effects on tar reforming, water gas-shift activities and sintering of Ni-based catalysts[J]. Applied Catalysis B: Environmental, 2021, 280: 119435. |
24 | ABDULRASHEED Abdulrahman, JALIL Aishah Abdul, GAMBO Yahya, et al. A review on catalyst development for dry reforming of methane to syngas: recent advances[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 175-193. |
25 | WANG Ziyun, CAO X M, ZHU Jinghao, et al. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory[J]. Journal of Catalysis, 2014, 311: 469-480. |
26 | OCHOA Aitor, BARBARIAS Itsaso, ARTETXE Maite, et al. Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis[J]. Applied Catalysis B: Environmental, 2017, 209: 554-565. |
27 | MONTERO Carolina, OCHOA Aitor, Pedro CASTAÑO, et al. Monitoring Ni0 and coke evolution during the deactivation of a Ni/La2O3-αAl2O3 catalyst in ethanol steam reforming in a fluidized bed[J]. Journal of Catalysis, 2015, 331: 181-192. |
28 | XU Qingli, FENG Peng, QI Wei, et al. Catalyst deactivation and regeneration during CO2 reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10277-10285. |
29 | WANG Changzhen, SUN Nannan, ZHAO Ning, et al. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014, 6(2): 640-648. |
30 | OCHOA Aitor, ARAMBURU Borja, VALLE Beatriz, et al. Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil[J]. Green Chemistry, 2017, 19(18): 4315-4333. |
31 | MONTERO Carolina, REMIRO Aingeru, VALLE Beatriz, et al. Origin and nature of coke in ethanol steam reforming and its role in deactivation of Ni/La2O3-αAl2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14736-14751. |
32 | ZHAO Qing, WANG Ye, WANG Yannan, et al. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: effect of H2O/CH4 ratio on carbon deposition[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14281-14292. |
33 | PAWAR Vivek, Debjyoti RAY, SUBRAHMANYAM Ch, et al. Study of short-term catalyst deactivation due to carbon deposition during biogas dry reforming on supported Ni catalyst[J]. Energy & Fuels, 2015, 29(12): 8047-8052. |
34 | WANG Changzhen, SUN Nannan, ZHAO Ning, et al. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane: a study under different feeding compositions[J]. Fuel, 2015, 143: 527-535. |
35 | Say Yei FOO, CHENG Chin Kui, NGUYEN Tuan Huy, et al. Syngas production from CH4 dry reforming over Co-Ni/Al2O3 catalyst: coupled reaction-deactivation kinetic analysis and the effect of O2co-feeding on H2∶CO ratio[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17019-17026. |
36 | DE SOUSA Helvio Silvester A, SILVA Antonio N DA, CASTRO Antonio J R, et al. Mesoporous catalysts for dry reforming of methane: correlation between structure and deactivation behaviour of Ni-containing catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12281-12291. |
37 | GAO Yuchen, AIHEMAITI Aikelaimu, JIANG Jianguo, et al. Inspection over carbon deposition features of various nickel catalysts during simulated biogas dry reforming[J]. Journal of Cleaner Production, 2020, 260: 120944. |
38 | DAMASKINOS C M, VASILIADES M A, EFSTATHIOU A M. The effect of Ti4+ dopant in the 5 wt% Ni/Ce1-xTixO2-δ catalyst on the carbon pathways of dry reforming of methane studied by various transient and isotopic techniques[J]. Applied Catalysis A: General, 2019, 579: 116-129. |
39 | ZHANG Xiaoping, WANG Feng, SONG Zhengwei, et al. Comparison of carbon deposition features between Ni/ZrO2 and Ni/SBA-15 for the dry reforming of methane[J]. Reaction Kinetics Mechanisms and Catalysis, 2020, 129(1): 457-470. |
40 | ARANDIA Aitor, REMIRO Aingeru, Verónica GARCÍA, et al. Oxidative steam reforming of raw bio-oil over supported and bulk Ni catalysts for hydrogen production[J]. Catalysts, 2018, 8(8): 322. |
41 | HE Limo, HU Song, JIANG Long, et al. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: roles of catalyst supports[J]. Fuel Processing Technology, 2018, 176: 7-14. |
42 | ESTEPHANE J, AOUAD S, HANY S, et al. CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9201-9208. |
43 | THEOFANIDIS Stavros Alexandros, PIETERSE Johannis A Z, POELMAN Hilde, et al. Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming[J]. Applied Catalysis B: Environmental, 2020, 267: 118691. |
44 | PAWAR Vivek, APPARI Srinivas, MONDER Dayadeep S, et al. Study of the combined deactivation due to sulfur poisoning and carbon deposition during biogas dry reforming on supported Ni catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8448-8455. |
45 | YIN Wang, GUILHAUME Nolven, SCHUURMAN Yves. Model biogas reforming over Ni-Rh/MgAl2O4 catalyst. Effect of gas impurities[J]. Chemical Engineering Journal, 2020, 398: 125534. |
46 | HERNANDEZ Asbel David, KAISALO Noora, SIMELL Pekka, et al. Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream[J]. Applied Catalysis B: Environmental, 2019, 258: 117977. |
47 | CHEN Xuejing, JIANG Jianguo, YAN Feng, et al. Dry reforming of model biogas on a Ni/SiO2 catalyst: overall performance and mechanisms of sulfur poisoning and regeneration[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10248-10257. |
48 | DOU Xiaomin, VEKSHA Andrei, CHAN Wei Ping, et al. Poisoning effects of H2S and HCl on the naphthalene steam reforming and water-gas shift activities of Ni and Fe catalysts[J]. Fuel, 2019, 241: 1008-1018. |
49 | Sebastián VECINO-MANTILLA, SIMON Pardis, Marielle HUVÉ, et al. Methane steam reforming in water-deficient conditions on a new Ni-exsolved Ruddlesden-Popper manganite: coke formation and H2S poisoning[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27145-27159. |
50 | ZHANG Qiulin, ZHANG Tengfei, SHI Yuzhen, et al. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane[J]. Journal of CO2 Utilization, 2017, 17: 10-19. |
51 | HAMBALI Hambali Umar, JALIL Aishah Abdul, ABDULRASHEED Abdulrahman A, et al. Enhanced dry reforming of methane over mesostructured fibrous Ni/MFI zeolite: influence of preparation methods[J]. Journal of the Energy Institute, 2020, 93(4): 1535-1543. |
52 | ZHANG Qiulin, TANG Tong, WANG Jing, et al. Facile template-free synthesis of Ni-SiO2 catalyst with excellent sintering-and coking-resistance for dry reforming of methane[J]. Catalysis Communications, 2019, 131: 105782. |
53 | JIN Baitang, LI Shiguang, LIANG Xinhua. Enhanced activity and stability of MgO-promoted Ni/Al2O3 catalyst for dry reforming of methane: role of MgO[J]. Fuel, 2021, 284: 119082. |
54 | SHANMUGAM Vetrivel, ZAPF Ralf, NEUBERG Stefan, et al. Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors[J]. Applied Catalysis B: Environmental, 2017, 203: 859-869. |
55 | ZHANG Zhonghui, QIN Changlei, Zhiliang OU, et al. Resistance of Ni/perovskite catalysts to H2S in toluene steam reforming for H2 production[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26800-26811. |
56 | LI Ziwei, MO Liuye, KATHIRASER Yasotha, et al. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536. |
57 | DAI Rong, ZHENG Ziliang, SHI Kai, et al. A multifunctional core-shell nanoreactor with unique features of sintering resistance for high-performance ethanol steam reforming reaction[J]. Fuel, 2021, 287: 119514. |
58 | TSODIKOV M V, KURDYMOV S S, KONSTANTINOV G I, et al. Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: activity and structure evolution[J]. International Journal of Hydrogen Energy, 2015, 40(7): 2963-2970. |
[1] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[2] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[3] | 何川, 吴国勋, 李昂, 张发捷, 卞子君, 卢承政, 王丽朋, 赵民. 垃圾焚烧脱硝催化剂钙镁失活与活性恢复特性[J]. 化工进展, 2023, 42(5): 2413-2420. |
[4] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[5] | 曹敏, 毛玉娇, 王倩倩, 李莎, 闫晓亮. 金属催化剂烧结机制及抗烧结策略[J]. 化工进展, 2023, 42(2): 744-755. |
[6] | 李乃珍, 孙瑞洁, 秦志峰, 苗茂谦, 吴琼笑, 常丽萍, 孙鹏程, 曾剑, 刘毅. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J]. 化工进展, 2023, 42(2): 783-793. |
[7] | 崔瑞利, 程涛, 宋俊男, 牛贵峰, 刘圆元, 张涛, 赵愉生, 王路海. 固定床渣油加氢脱残炭催化剂的再生表征及性能评价[J]. 化工进展, 2023, 42(10): 5200-5204. |
[8] | 刘玉龙, 胡南, 陈祥标, 陈森才, 曾冰勇, 丁德馨. 强碱性阴离子树脂对铀的循环吸附-淋洗性能及动力学分析[J]. 化工进展, 2023, 42(10): 5574-5583. |
[9] | 李钊铭, 沈伯雄, 封硕, 边瑶. 锰基催化剂结构形貌对催化剂抗硫抗水性能影响[J]. 化工进展, 2023, 42(1): 226-235. |
[10] | 李攀, 王彪, 徐骏浩, 王贤华, 胡俊豪, 宋建德, 白净, 常春. 生物质热解催化剂积炭问题的研究进展[J]. 化工进展, 2023, 42(1): 236-246. |
[11] | 陆子薇, 廖湘洲, 粟小理, 隋志军. 三氟三氯乙烷加氢脱氯Pd-Cu催化剂失活分析[J]. 化工进展, 2023, 42(1): 282-288. |
[12] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[13] | 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 丙烷脱氢用高稳定性Pt基催化剂研究进展[J]. 化工进展, 2022, 41(9): 4733-4753. |
[14] | 马静, 马子然, 林德海, 马少丹, 王宝冬. 活化液助溶剂对再生脱硝催化剂性能的影响[J]. 化工进展, 2022, 41(8): 4173-4180. |
[15] | 龙红明, 丁龙, 钱立新, 春铁军, 张洪亮, 余正伟. 烧结烟气中NO x 和二英的减排现状及发展趋势[J]. 化工进展, 2022, 41(7): 3865-3876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |