1 |
KARUNANITHI A T, ACHENIE L E K, GANI R. A computer-aided molecular design framework for crystallization solvent design[J]. Chemical Engineering Science, 2006, 61(4): 1247-1260.
|
2 |
STRUEBING H, GANASE Z, KARAMERTZANIS P G, et al. Computer-aided molecular design of solvents for accelerated reaction kinetics[J]. Nature Chemistry, 2013, 5(11): 952-957.
|
3 |
GMEHLING J. Present status and potential of group contribution methods for process development[J]. The Journal of Chemical Thermodynamics, 2009, 41(6): 731-747.
|
4 |
KLAMT A. Conductor-like screening model for real solvents-a new approach to the quantitative calculation of solvation phenomena[J]. Journal of Physical Chemistry, 1995, 99(7): 2224-2235.
|
5 |
LIN S T, SANDLER S I. A priori phase equilibrium prediction from a segment contribution solvation model[J]. Industrial & Engineering Chemistry Research, 2002, 41(5): 899-913.
|
6 |
DONG Y, ZHU R, GUO Y, et al. A united chemical thermodynamic model: COSMO-UNIFAC[J]. Industrial and Engineering Chemistry Research, 2018, 57(46): 15954-15958.
|
7 |
MU T, RAREY J, GMEHLING J. Group contribution prediction of surface charge density profiles for COSMO-RS(OI)[J]. AIChE Journal, 2007, 53(12): 3231-3240.
|
8 |
MU T, RAREY J, GMEHLING J. Group contribution prediction of surface charge density distribution of molecules for COSMO-SAC[J]. AIChE Journal, 2009, 55(12): 3298-3300.
|
9 |
LIU Q, ZHANG L, TANG K, et al. Machine learning-based atom contribution method for the prediction of surface charge density profiles and solvent design[J]. AIChE Journal, 2021, 67(2): e17110.
|
10 |
MULLINS E, OLDLAND R, LIU Y A, et al. Sigma-profile database for using COSMO-based thermodynamic methods[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4389-4415.
|
11 |
MARRERO J, GANI R. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183/184: 183-208.
|
12 |
LIU Q, ZHANG L, LIU L, et al. OptCAMD: an optimization-based framework and tool for molecular and mixture product design[J]. Computers & Chemical Engineering, 2019, 124: 285-301.
|
13 |
KARUNANITHI A T, ACHENIE L E K, GANI R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures[J]. Industrial and Engineering Chemistry Research, 2005, 44(13): 4785-4797.
|
14 |
HSIEH C M, SANDLER S I, LIN S T. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1): 90-97.
|
15 |
TE V G, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967.
|
16 |
Inc. Gaussian, Gaussian09W Rev. D.01[CP]. Wallingford, CT, 2016.
|
17 |
GANI R, HUKKERIKAR A S, SIN G, et al. Development of pure component property models for chemical product-process design and analysis[R]. Copenhagen: Technical University of Denmark, Department of Chemical and Biochemical Engineering, 2013.
|
18 |
LIU Q, ZHANG L, LIU L, et al. Computer-aided reaction solvent design based on transition state theory and COSMO-SAC[J]. Chemical Engineering Science, 2019, 202: 300-317.
|
19 |
ZHOU T, LYU Z, QI Z, et al. Robust design of optimal solvents for chemical reactions-a combined experimental and computational strategy[J]. Chemical Engineering Science, 2015, 137: 613-625.
|
20 |
LIU Q, ZHANG L, TANG K, et al. Computer-aided reaction solvent design considering inertness using group contribution-based reaction thermodynamic model[J]. Chemical Engineering Research & Design, 2019, 152: 123-133.
|
21 |
GERTIG C, KROEGER L, FLEITMANN L, et al. Rx-COSMO-CAMD: computer-aided molecular design of reaction solvents based on predictive kinetics from quantum chemistry[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22835-22846.
|