化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 126-141.DOI: 10.16085/j.issn.1000-6613.2020-1523
张玉魁1,2(), 张晨佳1,2,3, 孙振新1,2, 杜庶铭1,2, 徐冬1,2, 曲宗凯1,2, 陈保卫4
收稿日期:
2020-08-03
修回日期:
2020-12-19
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
张玉魁
作者简介:
张玉魁(1989—),男,博士,研究方向为氢能与储能技术。E-mail:基金资助:
ZHANG Yukui1,2(), ZHANG Chenjia1,2,3, SUN Zhenxin1,2, DU Shuming1,2, XU Dong1,2, QU Zongkai1,2, CHEN Baowei4
Received:
2020-08-03
Revised:
2020-12-19
Online:
2021-10-25
Published:
2021-11-09
Contact:
ZHANG Yukui
摘要:
固体氧化物电解池(solid oxide electrolysis cell, SOEC)是一种先进的电化学能量转化装置,具有高效、简单、灵活、环境友好等特点,是目前国际能源领域的研究热点。但SOEC在高温、密闭的复杂环境下运行,实验研究代价高昂,有些甚至无法完成。相对来说,数值模拟具有成本低、易操作的显著优势。近年来,有关SOEC电解制氢的模拟研究取得了较大进展。本文在简要介绍SOEC工作原理的基础上,从电化学、热力学和流体动力学等方面阐述了模拟基础理论,重点从稳态与瞬态及系统、宏观与微观的角度总结了高温电解制氢模拟技术的研究进展,进而指出当前研究存在的局限性。SOEC电解制氢模拟还需从数学模型验证、适用性分析、系统非设计工况和动态运行特性等方面加强研究工作。随着技术的不断发展与完善,数值模拟必将为SOEC技术商业化提供关键支撑。
中图分类号:
张玉魁, 张晨佳, 孙振新, 杜庶铭, 徐冬, 曲宗凯, 陈保卫. 高温固体氧化物电解制氢模拟研究进展[J]. 化工进展, 2021, 40(S1): 126-141.
ZHANG Yukui, ZHANG Chenjia, SUN Zhenxin, DU Shuming, XU Dong, QU Zongkai, CHEN Baowei. Review on modeling and simulation of high temperature solid oxide electrolysis for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 126-141.
1 | BP P. L.C. BP statistical review of world energy 2019[R]. BP P.L.C., 2019. |
2 | 国家统计局能源司. 中国能源统计年鉴2018[M]. 北京: 中国统计出版社, 2019: 34-54. |
Energy Department of China Statistics Bureau. China energy statistical yearbook 2018[M]. Beijing: China Statistical Publishing House, 2019:34-54. | |
3 | 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. |
BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceeding of the CSEE, 2015, 35(14):3699-3705. | |
4 | SAMAVATI M, SANTARELLI M, MARTIN A, et al. Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production[J]. Energy, 2017, 122: 37-49. |
5 | 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391. |
MU Shujun, LIN Jin, XING Xuetao, et al. Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power System Technology, 2017, 41(10):3385-3391. | |
6 | STAFFELL I, SCAMMAN D, VELAZQUEZ Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12: 463-491. |
7 | 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49(6): 852-855. |
LIU Mingyi, YU Bo, XU Jingming. Efficiency of solid oxide water electrolysis system for hydrogen production[J]. Journal of Tsinghua University(Natural Science Edition), 2009, 49(6):852-855. | |
8 | 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. |
24 | MA Zheng, LIU Chao, PU Jiangge, et al. Development of cathode materials in solid oxide electrolysis cell[J]. Journal of Ceramics, 2019, 40(5): 565-573. |
25 | 陈婷, 王绍荣. 固体氧化物电解池电解水研究综述[J]. 陶瓷学报, 2014, 35(1): 1-6. |
8 | XING Xuetao, LIN Jin, SONG Yonghua, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. |
9 | JENSEN S H, SUN X, EBBESEN S D, et al. Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9544-9549. |
10 | STOOTS C M, O’BRIEN J E, CONDIE K G, et al. High-temperature electrolysis for large-scale hydrogen production from nuclear energy--experimental investigations[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4861-4870. |
11 | LI Q, ZHENG Y, GUAN W, et al. Achieving high-efficiency hydrogen production using planar solid-oxide electrolysis stacks[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10833-10842. |
12 | SCHEFOLD J, BRISSE A, POEPKE H. Long-term steam electrolysis with electrolyte-supported solid oxide cells[J]. Electrochimica Acta, 2015, 179: 161-168. |
13 | ZHANG X, O’BRIEN J E, TAO G, et al. Experimental design, operation, and results of a 4kW high temperature steam electrolysis experiment[J]. Journal of Power Sources, 2015, 297: 90-97. |
14 | RIEDEL M, HEDDRICH M P, FRIEDRICH K A. Analysis of pressurized operation of 10 layer solid oxide electrolysis stacks[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4570-4581. |
15 | 刘同乐, 王诚, 付志强, 等. LSCF-GDC氧电极固体氧化物电堆高温蒸汽电解制氢性能研究[J]. 高校化学工程学报, 2016, 30(3):575-581. |
LIU Tongle, WANG Cheng, FU Zhiqiang, et al. Performance of solid oxide electrolysis stack with LSCF-GDC oxygen electrodes in hydrogen production from high temperature steam[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(3): 575-581. | |
16 | 霍海波, 朱新坚, 曹广益. SOFC建模与控制策略的研究现状与发展[J]. 电源技术, 2007, 31(10): 833-836. |
HUO Haibo, ZHU Xinjian, CAO Guangyi. Research status and development of modeling and controlling for SOFC[J]. Chinese Journal of Power Sources, 2007, 31(10): 833-836. | |
17 | STEMPIEN J P, SUN Q, CHAN S H. Solid oxide electrolyzer cell modeling: a review[J]. Journal of Power Technologies, 2013, 93(4):216-246. |
18 | HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, et al. Mathematical modeling of solid oxide fuel cells: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 1893-1917. |
19 | YU B, ZHANG W, CHEN J, et al. Advance in highly efficient hydrogen production by high temperature steam electrolysis[J]. Science in China Series B: Chemistry, 2008, 51(4): 289-304. |
20 | HERRING J S, O’BRIEN J E, STOOTS C M, et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy, 2007, 32(4):440-450. |
21 | NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2337-2354. |
22 | LAGUNA-BERCERO M A. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review[J]. Journal of Power Sources, 2012, 203: 4-16. |
23 | SHI Y, LUO Y, LI W, et al. Handbook of clean energy systems[M]. New York: John Wiley & Sons Ltd., 2015: 1-19 |
25 | CHEN Ting, WANG Shaorong. Water electrolysis using SOECs: a review[J]. Journal of Ceramics, 2014, 35(1): 1-6. |
26 | 赵晨欢, 张文强, 于波, 等. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288. |
ZHAO Chenhuan, ZHANG Wenqiang, YU Bo, et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry, 2016, 28(8): 1265-1288. | |
27 | 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5): 778-787. |
ZHANG Wenqiang, YU Bo, CHEN Jing, et al. Hydrogen production through solid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry, 2008, 20(5): 778-787. | |
28 | ELLIS M W, GUNES M B, THOMOPKINS D, et al. Status of fuel cell systems for combined heat and power applications in buildings[J]. Ashrae Transactions, 2002, 108(1): 1032-1044. |
29 | MENON V, JANARDHANAN V M, DEUTSCHMANN O. A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production[J]. Chemical Engineering Science, 2014, 110:83-93. |
30 | GOPALAN S, MOSLEH M, HARTVIGSEN J J, et al. Analysis of self-sustaining recuperative solid oxide electrolysis systems[J]. Journal of Power Sources, 2008, 185(2): 1328-1333. |
31 | NI M, LENUG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4648-4660. |
32 | ALZAHRANI A A, DINCER I. Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 44(33): 21404-21413. |
33 | ALZAHRANI A A, DINCER I. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production[J]. Applied Energy, 2018, 225: 471-485. |
34 | MOTTAGHIZADEH P, SANTHANAM S, HEDDRICH M P, et al. Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor[J]. Energy Conversion and Management, 2017, 142: 477-493. |
35 | BUTTLER A, KOLTUN R, WOLF R, et al. A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(1): 38-50. |
36 | ZHANG H, SU S, CHEN X, et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4298-4307. |
37 | KOUMI NGOH S, AYINA OHANDJA L M, KEMAJOU A, et al. Design and simulation of hybrid solar high-temperature hydrogen production system using both solar photovoltaic and thermal energy[J]. Sustainable Energy Technologies and Assessments, 2014, 7: 279-293. |
38 | ALZAHRANI A A, DINCER I. Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8042-8056. |
24 | 马征, 刘超, 蒲江戈, 等. 固体氧化物电解池阴极材料的发展现状[J]. 陶瓷学报, 2019, 40(5): 565-573. |
39 | SANZ-BERMEJO J, MUNOZ-ANTON J, GONZALEZ-AGUILAR J, et al. Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production[J]. Applied Energy, 2014, 131: 238-247. |
40 | LIU M, YU B, XU J, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008, 177(2): 493-499. |
41 | SHIN Y, PARK W, CHANG J, et al. Evaluation of the high temperature electrolysis of steam to produce hydrogen[J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1486-1491. |
42 | O’BRIEN J E. Thermodynamic considerations from thermal water splitting process and high temperature electrolysis[C]//2008 International Mechanical Engineering Congress and Exposition. Boston, 2008. |
43 | O’BRIEN J E, MCKELLAR M G, HARVEGO E A, et al. High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy--summary of system simulation and economic analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10):4808-4819. |
44 | HARVEGO E A, MCKELLAR M G, SOHAL M S, et al. Economic analysis of a nuclear reactor powered high-temperature electrolysis hydrogen production plant[C]//Energy Sustainability 2008. United States, 2008. |
45 | MANAGE M N, SORENSEN E, SIMONS S, et al. A modelling approach to assessing the feasibility of the integration of power stations with steam electrolysers[J]. Chemical Engineering Research and Design, 2014, 92(10): 1988-2005. |
46 | SIGUVINSSON J, MANSILLA C, LOVERA P, et al. Can high temperature steam electrolysis function with geothermal heat?[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1174-1182. |
47 | PERDIKARIS N, PANOPOULOS K D, HOFMANN P, et al. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2446-2456. |
48 | SPACIL H S, TEDMON C S. Electrochemical dissociation of water vapor in solid oxide electrolyte cells[J]. Journal of the Electrochemical Society, 1969, 116(12): 1618-1627. |
49 | NI M, LENUG M, LEUNG D. An electrochemical model of a solid oxide steam electrolyzer for hydrogen production[J]. Chemical Engineering & Technology, 2006, 29(5): 636-642. |
50 | NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2305-2313. |
51 | IM-ORB K, VISITDUMRONGKUL N, SAEBEA D, et al. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production[J]. Journal of Cleaner Production, 2018, 170: 1-13. |
52 | DUTTA S, MOREHOUSE J H, KHAN J A. Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer[J]. International Journal of Hydrogen Energy, 1996, 22(9): 883-895. |
53 | LAURENCIN J, KANE D, DELETTE G, et al. Modelling of solid oxide steam electrolyser: impact of the operating conditions on hydrogen production[J]. Journal of Power Sources, 2011, 196(4): 2080-2093. |
54 | HAWKES G L, O’BRIEN J E, STOOTS C M, et al. CFD model of a planar solid oxide electrolysis cell: base case and variations[C]//2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference. Vancouver, 2007. |
55 | HAWKES G L, O’BRIEN J E, STOOTS C M, et al. CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy[J]. Nuclear Technology, 2007, 158(2): 132-144. |
56 | HAWKES G, O’BRIEN J, STOOTS C, et al. 3D CFD model of a multi-cell high-temperature electrolysis stack[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4189-4197. |
57 | NI M. Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production[J]. International Journal of Hydrogen Energy, 2009, 34(18): 7795-7806. |
58 | XU Z, REN N, TANG M, et al. Numerical investigations for a solid oxide electrolyte cell stack[J]. International Journal of Hydrogen Energy, 2019, 44(38): 20997-21009. |
59 | GRONDIN D, DESEURE J, BRISSE A, et al. Simulation of a high temperature electrolyzer[J]. Journal of Applied Electrochemistry, 2010, 40(5): 933-941. |
60 | BERNADET L, GOUSSEAU G, CHATROUX A, et al. Influence of pressure on solid oxide electrolysis cells investigated by experimental and modeling approach[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12918-12928. |
61 | HENKE M, WILLICH C, KALLO J, et al. Theoretical study on pressurized operation of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12434-12439. |
62 | 侯权, 关成志, 肖国萍, 等. 氧分压对固体氧化物电解池性能的影响[J]. 物理化学学报, 2019, 35(3): 284-291. |
HOU Quan, GUAN Chengzhi, XIAO Guoping, et al. Effect of oxygen partial pressure on solid oxide electrolysis cells[J]. Acta Physico-Chimica Sinica, 2019, 35(3): 284-291. | |
63 | TODD D, SCHWAGER M, MERIDA W. Thermodynamics of high-temperature, high-pressure water electrolysis[J]. Journal of Power Sources, 2014, 269: 424-429. |
64 | 侯权, 关成志, 肖国萍, 等. 固体氧化物电解池尺寸对其性能的影响[J]. 核技术, 2019, 42(3): 43-51. |
HOU Quan, GUAN Chengzhi, XIAO Guoping, et al. Effect of size on the electrolytic performance of solid oxide electrolysis cell[J]. Nuclear Techniques, 2019, 42(3): 43-51. | |
65 | NAVASA M, YUAN J, SUNDEN B. Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production[J]. Applied Energy, 2015, 137: 867-876. |
66 | XU Z, ZHANG X, LI G, et al. Comparative performance investigation of different gas flow configurations for a planar solid oxide electrolyzer cell[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10785-10801. |
67 | YILDIZ B, SMITH J, SOFU T. Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell: analysis on SOEC resistances, size, and inlet flow conditions[R]. Chicago, Illinois, 2008: 1-23. |
68 | JIN X, XUE X. Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7321-7328. |
69 | NI M, LEUNG M K H, LEUNG D Y C. A modeling study on concentration overpotentials of a reversible solid oxide fuel cell[J]. Journal of Power Sources, 2006, 163(1): 460-466. |
70 | FERRERO D, LANZINI A, LEONE P, et al. Reversible operation of solid oxide cells under electrolysis and fuel cell modes: experimental study and model validation[J]. Chemical Engineering Journal, 2015, 274: 143-155. |
71 | HAUCK M, HERMANN S, SPLIETHOFF H. Simulation of a reversible SOFC with Aspen Plus[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10329-10340. |
72 | ZHANG J H, LEI L, LIU D, et al. Numerical investigation of solid oxide electrolysis cells for hydrogen production applied with different continuity expressions[J]. Energy Conversion & Management, 2017, 149: 646-659. |
73 | DEMIN A, GPRBOVA E, TSIAKARAS P. High temperature electrolyzer based on solid oxide co-ionic electrolyte: a theoretical model[J]. Journal of Power Sources, 2007, 171(1): 205-211. |
74 | NI M, LEUNG M K H, LEUNG D Y C. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production[J]. Electrochimica Acta, 2007, 52(24): 6707-6718. |
75 | LAY-GRINDLER E, LAURENCIN J, DELETTE G, et al. Micro modelling of solid oxide electrolysis cell: from performance to durability[J]. International Journal of Hydrogen Energy, 2013, 38(17): 6917-6929. |
76 | GRONDIN D, DESEURE J, OZIL P, et al. Computing approach of cathodic process within solid oxide electrolysis cell: experiments and continuum model validation[J]. Journal of Power Sources, 2011, 196(22): 9561-9567. |
77 | CACCIUTTOLO Q, VULLIET J, LAIR V, et al. Effect of pressure on high temperature steam electrolysis: model and experimental tests[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11378-11384. |
78 | O’BRIEN J E, STOOTS C M, HERRING J S, et al. Comparison of a one-dimensional model of a high-temperature solid-oxide electrolysis stack with CFD and experimental results[C]//ASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, 2005. |
79 | LI W, SHI Y, YU L, et al. Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: the effects of microstructure and thickness[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13738-13750. |
80 | GRONDIN D, DESEURE J, OZIL P, et al. Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description[J]. Chemical Engineering Research & Design, 2013, 91(1): 134-140. |
81 | PTEIPAS F, BRISSE A, BOUALLOU C. Model-based behavior of a high temperature electrolyser system operated at various loads[J]. Journal of Power Sources, 2013, 239: 584-595. |
82 | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2007, 166(1): 127-136. |
83 | CAI Q, LUNA-ORTIZ E, ADJIMAN C S, et al. The effects of operating conditions on the performance of a solid oxide steam electrolyser: a model-based study[J]. Fuel Cells, 2010, 10(6): 1114-1128. |
84 | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2008, 180(1): 354-364. |
85 | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: model-based dynamic behavior of a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2008, 180(1): 46-55. |
86 | CAI Q, HAW A W V, ADJIMAN C S, et al. Hydrogen production through steam electrolysis: a model-based study[C]//22nd European Symposium on Computer Aided Process Engineering. London, 2012. |
87 | JIN X, XUE X. Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions[J]. Journal of Power Sources, 2010, 195(19): 6652-6658. |
88 | KAZEMPOOR P, BRAUN R J. Model validation and performance analysis of regenerative solid oxide cells: electrolytic operation[J]. International Journal of Hydrogen Energy, 2014, 39(6): 2669-2684. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[5] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[8] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[9] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[10] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[11] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[12] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[13] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[14] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[15] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |